Xueting Huang, Girija Pawge, Christina E Snicer, Chia-Hung Christine Hsiao, Andrew J Wiemer
{"title":"PVR暴露影响人CD8+ T细胞的活化、粘附和蛋白表达,包括cd96介导的PVR转移。","authors":"Xueting Huang, Girija Pawge, Christina E Snicer, Chia-Hung Christine Hsiao, Andrew J Wiemer","doi":"10.1093/jimmun/vkae002","DOIUrl":null,"url":null,"abstract":"<p><p>Poliovirus receptor (PVR) ligands have gained attention as immunotherapy targets, yet their regulation remains unclear. Here, we examine the impact of PVR exposure on primary human CD8+ T cells. We used flow cytometry and Western blot analysis to quantify expression of PVR and its ligands in naïve and effector T cells and used adhesion assays and enzyme-linked immunosorbent assay (ELISA) to assess the impact of PVR on T cell adhesion and cytokine production. Stimulation with phytohemagglutinin P strongly increased DNAM-1 expression and caused a less robust and more variable increase in TIGIT expression. Exposure to PVR-Fc enhanced the CD8+ T cell adhesion to ICAM-1-coated plates in a dose-dependent manner, while exposure to PVR-expressing K32 cells mildly decreased CD8+ T cell interferon γ release. However, PVR exposure strongly decreased the expression of DNAM-1, TIGIT, and CD96. The reduction of DNAM-1, TIGIT, and CD96 induced by PVR was dominant to the increase caused by T cell receptor signaling. The impact of PVR on their expression was completely abolished by the Q63R and F128R point mutations of PVR, while DNAM-1 was partially rescued by inhibitors of Src and protein kinase C. Additionally, PVR exposure along with T cell receptor signaling promoted the transfer of surface proteins including PVR from K32 cells to CD8+ T cells. This PVR transfer was mediated by the IgV domain of PVR and CD96 on CD8+ T cells and required cellular contact. Our findings collectively demonstrate that PVR engagement has a mild antagonistic effect on interferon γ production but strongly impacts CD8+ T cell adhesion and protein expression.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":"214 1","pages":"55-71"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PVR exposure influences the activation, adhesion, and protein expression of human CD8+ T cells, including the CD96-mediated transfer of PVR.\",\"authors\":\"Xueting Huang, Girija Pawge, Christina E Snicer, Chia-Hung Christine Hsiao, Andrew J Wiemer\",\"doi\":\"10.1093/jimmun/vkae002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poliovirus receptor (PVR) ligands have gained attention as immunotherapy targets, yet their regulation remains unclear. Here, we examine the impact of PVR exposure on primary human CD8+ T cells. We used flow cytometry and Western blot analysis to quantify expression of PVR and its ligands in naïve and effector T cells and used adhesion assays and enzyme-linked immunosorbent assay (ELISA) to assess the impact of PVR on T cell adhesion and cytokine production. Stimulation with phytohemagglutinin P strongly increased DNAM-1 expression and caused a less robust and more variable increase in TIGIT expression. Exposure to PVR-Fc enhanced the CD8+ T cell adhesion to ICAM-1-coated plates in a dose-dependent manner, while exposure to PVR-expressing K32 cells mildly decreased CD8+ T cell interferon γ release. However, PVR exposure strongly decreased the expression of DNAM-1, TIGIT, and CD96. The reduction of DNAM-1, TIGIT, and CD96 induced by PVR was dominant to the increase caused by T cell receptor signaling. The impact of PVR on their expression was completely abolished by the Q63R and F128R point mutations of PVR, while DNAM-1 was partially rescued by inhibitors of Src and protein kinase C. Additionally, PVR exposure along with T cell receptor signaling promoted the transfer of surface proteins including PVR from K32 cells to CD8+ T cells. This PVR transfer was mediated by the IgV domain of PVR and CD96 on CD8+ T cells and required cellular contact. Our findings collectively demonstrate that PVR engagement has a mild antagonistic effect on interferon γ production but strongly impacts CD8+ T cell adhesion and protein expression.</p>\",\"PeriodicalId\":16045,\"journal\":{\"name\":\"Journal of immunology\",\"volume\":\"214 1\",\"pages\":\"55-71\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jimmun/vkae002\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jimmun/vkae002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
PVR exposure influences the activation, adhesion, and protein expression of human CD8+ T cells, including the CD96-mediated transfer of PVR.
Poliovirus receptor (PVR) ligands have gained attention as immunotherapy targets, yet their regulation remains unclear. Here, we examine the impact of PVR exposure on primary human CD8+ T cells. We used flow cytometry and Western blot analysis to quantify expression of PVR and its ligands in naïve and effector T cells and used adhesion assays and enzyme-linked immunosorbent assay (ELISA) to assess the impact of PVR on T cell adhesion and cytokine production. Stimulation with phytohemagglutinin P strongly increased DNAM-1 expression and caused a less robust and more variable increase in TIGIT expression. Exposure to PVR-Fc enhanced the CD8+ T cell adhesion to ICAM-1-coated plates in a dose-dependent manner, while exposure to PVR-expressing K32 cells mildly decreased CD8+ T cell interferon γ release. However, PVR exposure strongly decreased the expression of DNAM-1, TIGIT, and CD96. The reduction of DNAM-1, TIGIT, and CD96 induced by PVR was dominant to the increase caused by T cell receptor signaling. The impact of PVR on their expression was completely abolished by the Q63R and F128R point mutations of PVR, while DNAM-1 was partially rescued by inhibitors of Src and protein kinase C. Additionally, PVR exposure along with T cell receptor signaling promoted the transfer of surface proteins including PVR from K32 cells to CD8+ T cells. This PVR transfer was mediated by the IgV domain of PVR and CD96 on CD8+ T cells and required cellular contact. Our findings collectively demonstrate that PVR engagement has a mild antagonistic effect on interferon γ production but strongly impacts CD8+ T cell adhesion and protein expression.
期刊介绍:
The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)