MCI分类的持续同源性:图过滤与Vietoris-Rips过滤的比较分析。

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1518984
Debanjali Bhattacharya, Rajneet Kaur, Ninad Aithal, Neelam Sinha, Thomas Gregor Issac
{"title":"MCI分类的持续同源性:图过滤与Vietoris-Rips过滤的比较分析。","authors":"Debanjali Bhattacharya, Rajneet Kaur, Ninad Aithal, Neelam Sinha, Thomas Gregor Issac","doi":"10.3389/fnins.2025.1518984","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mild cognitive impairment (MCI), often linked to early neurodegeneration, is associated with subtle disruptions in brain connectivity. In this paper, the applicability of persistent homology, a cutting-edge topological data analysis technique is explored for classifying MCI subtypes.</p><p><strong>Method: </strong>The study examines brain network topology derived from fMRI time series data. In this regard, we investigate two methods for computing persistent homology: (1) Vietoris-Rips filtration, which leverages point clouds generated from fMRI time series to capture dynamic and global changes in brain connectivity, and (2) graph filtration, which examines connectivity matrices based on static pairwise correlations. The obtained persistent topological features are quantified using Wasserstein distance, which enables a detailed comparison of brain network structures.</p><p><strong>Result: </strong>Our findings show that Vietoris-Rips filtration significantly outperforms graph filtration in brain network analysis. Specifically, it achieves a maximum accuracy of 85.7% in the Default Mode Network, for classifying MCI using in-house dataset.</p><p><strong>Discussion: </strong>This study highlights the superior ability of Vietoris-Rips filtration to capture intricate brain network patterns, offering a robust tool for early diagnosis and precise classification of MCI subtypes.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1518984"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897488/pdf/","citationCount":"0","resultStr":"{\"title\":\"Persistent homology for MCI classification: a comparative analysis between graph and Vietoris-Rips filtrations.\",\"authors\":\"Debanjali Bhattacharya, Rajneet Kaur, Ninad Aithal, Neelam Sinha, Thomas Gregor Issac\",\"doi\":\"10.3389/fnins.2025.1518984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Mild cognitive impairment (MCI), often linked to early neurodegeneration, is associated with subtle disruptions in brain connectivity. In this paper, the applicability of persistent homology, a cutting-edge topological data analysis technique is explored for classifying MCI subtypes.</p><p><strong>Method: </strong>The study examines brain network topology derived from fMRI time series data. In this regard, we investigate two methods for computing persistent homology: (1) Vietoris-Rips filtration, which leverages point clouds generated from fMRI time series to capture dynamic and global changes in brain connectivity, and (2) graph filtration, which examines connectivity matrices based on static pairwise correlations. The obtained persistent topological features are quantified using Wasserstein distance, which enables a detailed comparison of brain network structures.</p><p><strong>Result: </strong>Our findings show that Vietoris-Rips filtration significantly outperforms graph filtration in brain network analysis. Specifically, it achieves a maximum accuracy of 85.7% in the Default Mode Network, for classifying MCI using in-house dataset.</p><p><strong>Discussion: </strong>This study highlights the superior ability of Vietoris-Rips filtration to capture intricate brain network patterns, offering a robust tool for early diagnosis and precise classification of MCI subtypes.</p>\",\"PeriodicalId\":12639,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"19 \",\"pages\":\"1518984\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897488/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2025.1518984\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1518984","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

轻度认知障碍(MCI)通常与早期神经变性有关,与大脑连接的细微中断有关。本文探讨了一种前沿的拓扑数据分析技术——持久同源性在MCI亚型分类中的适用性。方法:研究从fMRI时间序列数据中提取的脑网络拓扑结构。在这方面,我们研究了两种计算持久同源性的方法:(1)Vietoris-Rips过滤,它利用fMRI时间序列产生的点云来捕捉大脑连接的动态和全局变化;(2)图过滤,它基于静态两两相关来检查连接矩阵。使用Wasserstein距离对获得的持久拓扑特征进行量化,从而可以对大脑网络结构进行详细的比较。结果:我们的研究结果表明,Vietoris-Rips过滤在脑网络分析中明显优于图过滤。具体来说,在使用内部数据集对MCI进行分类时,它在Default Mode Network中达到了85.7%的最高准确率。讨论:本研究强调了Vietoris-Rips过滤在捕捉复杂脑网络模式方面的卓越能力,为早期诊断和精确分类MCI亚型提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistent homology for MCI classification: a comparative analysis between graph and Vietoris-Rips filtrations.

Introduction: Mild cognitive impairment (MCI), often linked to early neurodegeneration, is associated with subtle disruptions in brain connectivity. In this paper, the applicability of persistent homology, a cutting-edge topological data analysis technique is explored for classifying MCI subtypes.

Method: The study examines brain network topology derived from fMRI time series data. In this regard, we investigate two methods for computing persistent homology: (1) Vietoris-Rips filtration, which leverages point clouds generated from fMRI time series to capture dynamic and global changes in brain connectivity, and (2) graph filtration, which examines connectivity matrices based on static pairwise correlations. The obtained persistent topological features are quantified using Wasserstein distance, which enables a detailed comparison of brain network structures.

Result: Our findings show that Vietoris-Rips filtration significantly outperforms graph filtration in brain network analysis. Specifically, it achieves a maximum accuracy of 85.7% in the Default Mode Network, for classifying MCI using in-house dataset.

Discussion: This study highlights the superior ability of Vietoris-Rips filtration to capture intricate brain network patterns, offering a robust tool for early diagnosis and precise classification of MCI subtypes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信