马铃薯淀粉加工改性对淀粉消化率和抗性淀粉III型水平的影响。

IF 4.7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Foods Pub Date : 2025-03-04 DOI:10.3390/foods14050880
Moshit Yaskin Harush, Carmit Shani Levi, Uri Lesmes
{"title":"马铃薯淀粉加工改性对淀粉消化率和抗性淀粉III型水平的影响。","authors":"Moshit Yaskin Harush, Carmit Shani Levi, Uri Lesmes","doi":"10.3390/foods14050880","DOIUrl":null,"url":null,"abstract":"<p><p>Starch digestibility and the content of resistant starch (RS) play a crucial role in human health, particularly in relation to glycemic responses, insulin sensitivity, fat oxidation, and satiety. This study investigates the impact of processing methods on potato starch digestibility and RS content, focusing on two modification techniques: autoclaving and high hydrostatic pressure (HHP), followed by retrogradation at different temperatures. The research employs a comprehensive approach to characterize structural changes in starch samples using X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM). In turn, semi-dynamic in vitro digestion experiments based on the INFOGEST protocol were conducted to assess starch digestibility, while RS content was evaluated through enzymatic digestion of the non-RS fraction. SEM, XRD, and FTIR measurements reveal thermal processing appreciably affected starch architectures while HHP had a marginal effect. Further, the FTIR 1045/1022R ratio was found to be correlated with RS content measurements while reducing rapidly digestible starch (RDS). The findings led to the stipulation that thermal processing facilitates amylose leaching and granular disruption. In turn, retrogradation enabled the deposition of the amylose onto the disrupted structures which delineated their subsequent liability to enzymatic digestion. Conversely, HHP had minimal effects on granular architectures and amylose leaching. Overall, this research provides valuable insights for processing starch-based food products with the goal of increasing RS content, which may have significant implications for the food industry and nutritional science.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899134/pdf/","citationCount":"0","resultStr":"{\"title\":\"Potential of Process-Induced Modification of Potato Starch to Modulate Starch Digestibility and Levels of Resistant Starch Type III.\",\"authors\":\"Moshit Yaskin Harush, Carmit Shani Levi, Uri Lesmes\",\"doi\":\"10.3390/foods14050880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Starch digestibility and the content of resistant starch (RS) play a crucial role in human health, particularly in relation to glycemic responses, insulin sensitivity, fat oxidation, and satiety. This study investigates the impact of processing methods on potato starch digestibility and RS content, focusing on two modification techniques: autoclaving and high hydrostatic pressure (HHP), followed by retrogradation at different temperatures. The research employs a comprehensive approach to characterize structural changes in starch samples using X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM). In turn, semi-dynamic in vitro digestion experiments based on the INFOGEST protocol were conducted to assess starch digestibility, while RS content was evaluated through enzymatic digestion of the non-RS fraction. SEM, XRD, and FTIR measurements reveal thermal processing appreciably affected starch architectures while HHP had a marginal effect. Further, the FTIR 1045/1022R ratio was found to be correlated with RS content measurements while reducing rapidly digestible starch (RDS). The findings led to the stipulation that thermal processing facilitates amylose leaching and granular disruption. In turn, retrogradation enabled the deposition of the amylose onto the disrupted structures which delineated their subsequent liability to enzymatic digestion. Conversely, HHP had minimal effects on granular architectures and amylose leaching. Overall, this research provides valuable insights for processing starch-based food products with the goal of increasing RS content, which may have significant implications for the food industry and nutritional science.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899134/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods14050880\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14050880","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

淀粉消化率和抗性淀粉(RS)的含量在人体健康中起着至关重要的作用,特别是在血糖反应、胰岛素敏感性、脂肪氧化和饱腹感方面。本研究研究了加工方法对马铃薯淀粉消化率和RS含量的影响,重点研究了两种改性技术:高压灭菌和高压(HHP),然后在不同温度下进行降解。该研究采用x射线衍射(XRD)、衰减全反射-傅里叶变换红外(ATR-FTIR)光谱和扫描电子显微镜(SEM)等综合方法表征淀粉样品的结构变化。然后,根据INFOGEST方案进行半动态体外消化实验,以评估淀粉消化率,同时通过酶消化非RS部分来评估RS含量。SEM, XRD和FTIR测量表明,热处理对淀粉结构有明显的影响,而HHP的影响很小。此外,FTIR 1045/1022R比值与RS含量测量值相关,同时降低了快速可消化淀粉(RDS)。这些发现导致了热处理促进直链淀粉浸出和颗粒破坏的规定。反过来,退化使直链淀粉沉积在被破坏的结构上,这些结构描述了它们随后对酶消化的敏感性。相反,HHP对颗粒结构和直链淀粉浸出的影响很小。总的来说,本研究为以增加RS含量为目标的淀粉基食品加工提供了有价值的见解,这可能对食品工业和营养科学具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential of Process-Induced Modification of Potato Starch to Modulate Starch Digestibility and Levels of Resistant Starch Type III.

Starch digestibility and the content of resistant starch (RS) play a crucial role in human health, particularly in relation to glycemic responses, insulin sensitivity, fat oxidation, and satiety. This study investigates the impact of processing methods on potato starch digestibility and RS content, focusing on two modification techniques: autoclaving and high hydrostatic pressure (HHP), followed by retrogradation at different temperatures. The research employs a comprehensive approach to characterize structural changes in starch samples using X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM). In turn, semi-dynamic in vitro digestion experiments based on the INFOGEST protocol were conducted to assess starch digestibility, while RS content was evaluated through enzymatic digestion of the non-RS fraction. SEM, XRD, and FTIR measurements reveal thermal processing appreciably affected starch architectures while HHP had a marginal effect. Further, the FTIR 1045/1022R ratio was found to be correlated with RS content measurements while reducing rapidly digestible starch (RDS). The findings led to the stipulation that thermal processing facilitates amylose leaching and granular disruption. In turn, retrogradation enabled the deposition of the amylose onto the disrupted structures which delineated their subsequent liability to enzymatic digestion. Conversely, HHP had minimal effects on granular architectures and amylose leaching. Overall, this research provides valuable insights for processing starch-based food products with the goal of increasing RS content, which may have significant implications for the food industry and nutritional science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信