切向双曲型三元杂化纳米流体在达西-福尔海默多孔介质中通过可变导热系数的可渗透拉伸片的非定常MHD流动。

Q2 Pharmacology, Toxicology and Pharmaceutics
F1000Research Pub Date : 2025-03-10 eCollection Date: 2025-01-01 DOI:10.12688/f1000research.158629.2
Asfaw Tsegaye Moltot, Eshetu Haile Gorfie, Gurju Awgichew Zergaw, Hunegnaw Dessie
{"title":"切向双曲型三元杂化纳米流体在达西-福尔海默多孔介质中通过可变导热系数的可渗透拉伸片的非定常MHD流动。","authors":"Asfaw Tsegaye Moltot, Eshetu Haile Gorfie, Gurju Awgichew Zergaw, Hunegnaw Dessie","doi":"10.12688/f1000research.158629.2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This research investigates the unsteady magnetohydrodynamic (MHD) flow, heat, and mass transfer of tangent hyperbolic ternary hybrid nanofluids over a permeable stretching sheet. The study considers three types of nanoparticles-aluminum oxide (Al₂O₃), copper (Cu), and titanium oxide (TiO₂)-dispersed in a base fluid of ethylene glycol (C₂H₆O₂). This ternary hybrid nanofluid (Al₂O₃-Cu-TiO₂/C₂H₆O₂) has potential applications in cooling systems, biomedical uses for targeted drug delivery and hyperthermia treatments, heat exchangers, and polymer processing techniques like extrusion and casting.</p><p><strong>Methods: </strong>This study will examine the combined effects of Weissenberg number, power law index, nanoparticle volume fraction, viscous dissipation, magnetic field, heat generation, nonlinear thermal radiation, temperature ratio, Joule heating, Brownian motion, thermophoresis, porous permeability, variable thermal conductivity, Eckert number, Prandtl number, Schmidt number, chemical reaction, velocity ratio, and Forchheimer number on the electrical conductivity of unsteady flow in tangent hyperbolic ternary hybrid nanofluids. The governing equations are transformed into similarity equations using appropriate transformations and solved numerically with the MATLAB BVP5C package. The results are validated against data from published articles to ensure reproducibility.</p><p><strong>Results: </strong>The findings reveal that an increase in the Weissenberg and Forchheimer numbers reduces the velocity profile, while the temperature distribution increases. The variable thermal conductivity parameter (Γ) leads to a higher temperature profile, indicating improved heat transfer. Higher nanoparticle concentrations in the nanofluids and hybrid nanofluids result in enhanced skin friction, Nusselt number, and Sherwood number. Ternary hybrid nanofluids show the most significant improvement in heat transfer and thermal conductivity.</p><p><strong>Conclusions: </strong>Ternary hybrid nanofluids significantly enhance heat and mass transfer, showing potential for applications in cooling systems, drug delivery, and polymer processing. The numerical results are consistent with previous research, confirming the reliability and reproducibility of the findings.</p>","PeriodicalId":12260,"journal":{"name":"F1000Research","volume":"14 ","pages":"152"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897691/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unsteady MHD flow of tangent hyperbolic ternary hybrid nanofluid in a darcy-forchheimer porous medium over a permeable stretching sheet with variable thermal conductivity.\",\"authors\":\"Asfaw Tsegaye Moltot, Eshetu Haile Gorfie, Gurju Awgichew Zergaw, Hunegnaw Dessie\",\"doi\":\"10.12688/f1000research.158629.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This research investigates the unsteady magnetohydrodynamic (MHD) flow, heat, and mass transfer of tangent hyperbolic ternary hybrid nanofluids over a permeable stretching sheet. The study considers three types of nanoparticles-aluminum oxide (Al₂O₃), copper (Cu), and titanium oxide (TiO₂)-dispersed in a base fluid of ethylene glycol (C₂H₆O₂). This ternary hybrid nanofluid (Al₂O₃-Cu-TiO₂/C₂H₆O₂) has potential applications in cooling systems, biomedical uses for targeted drug delivery and hyperthermia treatments, heat exchangers, and polymer processing techniques like extrusion and casting.</p><p><strong>Methods: </strong>This study will examine the combined effects of Weissenberg number, power law index, nanoparticle volume fraction, viscous dissipation, magnetic field, heat generation, nonlinear thermal radiation, temperature ratio, Joule heating, Brownian motion, thermophoresis, porous permeability, variable thermal conductivity, Eckert number, Prandtl number, Schmidt number, chemical reaction, velocity ratio, and Forchheimer number on the electrical conductivity of unsteady flow in tangent hyperbolic ternary hybrid nanofluids. The governing equations are transformed into similarity equations using appropriate transformations and solved numerically with the MATLAB BVP5C package. The results are validated against data from published articles to ensure reproducibility.</p><p><strong>Results: </strong>The findings reveal that an increase in the Weissenberg and Forchheimer numbers reduces the velocity profile, while the temperature distribution increases. The variable thermal conductivity parameter (Γ) leads to a higher temperature profile, indicating improved heat transfer. Higher nanoparticle concentrations in the nanofluids and hybrid nanofluids result in enhanced skin friction, Nusselt number, and Sherwood number. Ternary hybrid nanofluids show the most significant improvement in heat transfer and thermal conductivity.</p><p><strong>Conclusions: </strong>Ternary hybrid nanofluids significantly enhance heat and mass transfer, showing potential for applications in cooling systems, drug delivery, and polymer processing. The numerical results are consistent with previous research, confirming the reliability and reproducibility of the findings.</p>\",\"PeriodicalId\":12260,\"journal\":{\"name\":\"F1000Research\",\"volume\":\"14 \",\"pages\":\"152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897691/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"F1000Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/f1000research.158629.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"F1000Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/f1000research.158629.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究研究了正切双曲三元混合纳米流体在可渗透拉伸片上的非定常磁流体动力学(MHD)流动、传热和传质。该研究考虑了三种类型的纳米颗粒——氧化铝(Al₂O₃)、铜(Cu)和氧化钛(TiO₂)——分散在乙二醇(C₂H₆O₂)的基液中。这种三元混合纳米流体(Al₂O₃-Cu-TiO₂/C₂H₆O₂)在冷却系统、用于靶向药物输送和热疗的生物医学用途、热交换器和聚合物加工技术(如挤出和铸造)方面具有潜在的应用。方法:本研究将考察Weissenberg数、幂律指数、纳米颗粒体积分数、粘性耗散、磁场、发热、非线性热辐射、温度比、焦耳加热、布朗运动、热电泳、多孔性、变导热系数、Eckert数、普朗特数、施密特数、化学反应、速度比、和Forchheimer数对切线双曲型三元杂化纳米流体非定常流动电导率的影响。通过适当的变换将控制方程转化为相似方程,并利用MATLAB BVP5C软件包进行数值求解。结果与已发表文章的数据进行验证,以确保可重复性。结果:Weissenberg数和Forchheimer数的增加使速度分布减小,而温度分布增大。可变导热系数参数(Γ)导致更高的温度分布,表明传热改善。纳米流体和混合纳米流体中较高的纳米颗粒浓度会导致表面摩擦、努塞尔数和舍伍德数的增强。三元杂化纳米流体在传热和导热性能方面的改善最为显著。结论:三元杂化纳米流体显著增强了传热传质,在冷却系统、药物输送和聚合物加工方面显示出潜在的应用前景。数值结果与前人的研究结果一致,证实了研究结果的可靠性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsteady MHD flow of tangent hyperbolic ternary hybrid nanofluid in a darcy-forchheimer porous medium over a permeable stretching sheet with variable thermal conductivity.

Background: This research investigates the unsteady magnetohydrodynamic (MHD) flow, heat, and mass transfer of tangent hyperbolic ternary hybrid nanofluids over a permeable stretching sheet. The study considers three types of nanoparticles-aluminum oxide (Al₂O₃), copper (Cu), and titanium oxide (TiO₂)-dispersed in a base fluid of ethylene glycol (C₂H₆O₂). This ternary hybrid nanofluid (Al₂O₃-Cu-TiO₂/C₂H₆O₂) has potential applications in cooling systems, biomedical uses for targeted drug delivery and hyperthermia treatments, heat exchangers, and polymer processing techniques like extrusion and casting.

Methods: This study will examine the combined effects of Weissenberg number, power law index, nanoparticle volume fraction, viscous dissipation, magnetic field, heat generation, nonlinear thermal radiation, temperature ratio, Joule heating, Brownian motion, thermophoresis, porous permeability, variable thermal conductivity, Eckert number, Prandtl number, Schmidt number, chemical reaction, velocity ratio, and Forchheimer number on the electrical conductivity of unsteady flow in tangent hyperbolic ternary hybrid nanofluids. The governing equations are transformed into similarity equations using appropriate transformations and solved numerically with the MATLAB BVP5C package. The results are validated against data from published articles to ensure reproducibility.

Results: The findings reveal that an increase in the Weissenberg and Forchheimer numbers reduces the velocity profile, while the temperature distribution increases. The variable thermal conductivity parameter (Γ) leads to a higher temperature profile, indicating improved heat transfer. Higher nanoparticle concentrations in the nanofluids and hybrid nanofluids result in enhanced skin friction, Nusselt number, and Sherwood number. Ternary hybrid nanofluids show the most significant improvement in heat transfer and thermal conductivity.

Conclusions: Ternary hybrid nanofluids significantly enhance heat and mass transfer, showing potential for applications in cooling systems, drug delivery, and polymer processing. The numerical results are consistent with previous research, confirming the reliability and reproducibility of the findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
F1000Research
F1000Research Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.00
自引率
0.00%
发文量
1646
审稿时长
1 weeks
期刊介绍: F1000Research publishes articles and other research outputs reporting basic scientific, scholarly, translational and clinical research across the physical and life sciences, engineering, medicine, social sciences and humanities. F1000Research is a scholarly publication platform set up for the scientific, scholarly and medical research community; each article has at least one author who is a qualified researcher, scholar or clinician actively working in their speciality and who has made a key contribution to the article. Articles must be original (not duplications). All research is suitable irrespective of the perceived level of interest or novelty; we welcome confirmatory and negative results, as well as null studies. F1000Research publishes different type of research, including clinical trials, systematic reviews, software tools, method articles, and many others. Reviews and Opinion articles providing a balanced and comprehensive overview of the latest discoveries in a particular field, or presenting a personal perspective on recent developments, are also welcome. See the full list of article types we accept for more information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信