{"title":"定向和功能性骨骼肌组织构建的工程策略。","authors":"Tingting Fan, Minxuan Jia, Heng Liu, Zili Gao, Wenhui Huang, Wenli Liu, Qi Gu","doi":"10.1088/1758-5090/adbfc2","DOIUrl":null,"url":null,"abstract":"<p><p>The growth and formation of tissues, such as skeletal muscle, involve a complex interplay of spatiotemporal events, including cell migration, orientation, proliferation, and differentiation. With the continuous advancement of<i>in vitro</i>construction techniques, many studies have contributed to skeletal muscle tissue engineering (STME). This review summarizes recent advances in the ordered construction of skeletal muscle tissues, and evaluates the impact of engineering strategies on cell behavior and maturation, including biomaterials, manufacturing methods and training means. Biomaterials are used as scaffolds to provide a good microenvironment for myoblasts, manufacturing methods to guide the alignment of myoblasts through construction techniques, and external stimulation to further promote the myoblast orientation and maturation after construction, resulting in oriented and functional skeletal muscle tissues. Subsequently, we critically examine recent advancements in engineered composite skeletal muscle constructs, with particular emphasis on essential functionalization strategies including skeletal muscle vascularization, innervation and others. Concurrently, we evaluate emerging applications of STME in diverse translational areas such as volumetric muscle loss treatment, muscle-related disease models, drug screening, biohybrid robots, and cultured meat. Finally, future perspectives are proposed to provide guidance for rational design based on engineering strategies in STME.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering strategies for the construction of oriented and functional skeletal muscle tissues.\",\"authors\":\"Tingting Fan, Minxuan Jia, Heng Liu, Zili Gao, Wenhui Huang, Wenli Liu, Qi Gu\",\"doi\":\"10.1088/1758-5090/adbfc2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growth and formation of tissues, such as skeletal muscle, involve a complex interplay of spatiotemporal events, including cell migration, orientation, proliferation, and differentiation. With the continuous advancement of<i>in vitro</i>construction techniques, many studies have contributed to skeletal muscle tissue engineering (STME). This review summarizes recent advances in the ordered construction of skeletal muscle tissues, and evaluates the impact of engineering strategies on cell behavior and maturation, including biomaterials, manufacturing methods and training means. Biomaterials are used as scaffolds to provide a good microenvironment for myoblasts, manufacturing methods to guide the alignment of myoblasts through construction techniques, and external stimulation to further promote the myoblast orientation and maturation after construction, resulting in oriented and functional skeletal muscle tissues. Subsequently, we critically examine recent advancements in engineered composite skeletal muscle constructs, with particular emphasis on essential functionalization strategies including skeletal muscle vascularization, innervation and others. Concurrently, we evaluate emerging applications of STME in diverse translational areas such as volumetric muscle loss treatment, muscle-related disease models, drug screening, biohybrid robots, and cultured meat. Finally, future perspectives are proposed to provide guidance for rational design based on engineering strategies in STME.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/adbfc2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adbfc2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Engineering strategies for the construction of oriented and functional skeletal muscle tissues.
The growth and formation of tissues, such as skeletal muscle, involve a complex interplay of spatiotemporal events, including cell migration, orientation, proliferation, and differentiation. With the continuous advancement ofin vitroconstruction techniques, many studies have contributed to skeletal muscle tissue engineering (STME). This review summarizes recent advances in the ordered construction of skeletal muscle tissues, and evaluates the impact of engineering strategies on cell behavior and maturation, including biomaterials, manufacturing methods and training means. Biomaterials are used as scaffolds to provide a good microenvironment for myoblasts, manufacturing methods to guide the alignment of myoblasts through construction techniques, and external stimulation to further promote the myoblast orientation and maturation after construction, resulting in oriented and functional skeletal muscle tissues. Subsequently, we critically examine recent advancements in engineered composite skeletal muscle constructs, with particular emphasis on essential functionalization strategies including skeletal muscle vascularization, innervation and others. Concurrently, we evaluate emerging applications of STME in diverse translational areas such as volumetric muscle loss treatment, muscle-related disease models, drug screening, biohybrid robots, and cultured meat. Finally, future perspectives are proposed to provide guidance for rational design based on engineering strategies in STME.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).