大肠杆菌α-溶血素在微流控脾样装置中诱导红细胞潴留。

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Nicolás Andrés Saffioti, Emilia Belén Sousa, Mickaël Marin, María Florencia Leal Denis, Mariano Aníbal Ostuni, Vanesa Herlax, Pablo Julio Schwarzbaum, Diego Pallarola
{"title":"大肠杆菌α-溶血素在微流控脾样装置中诱导红细胞潴留。","authors":"Nicolás Andrés Saffioti, Emilia Belén Sousa, Mickaël Marin, María Florencia Leal Denis, Mariano Aníbal Ostuni, Vanesa Herlax, Pablo Julio Schwarzbaum, Diego Pallarola","doi":"10.1016/j.bpj.2025.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>α-hemolysin (HlyA) is a major exotoxin secreted by uropathogenic Escherichia coli (UPEC), known for its ability to lyse red blood cells (RBCs). Although its lytic effects are well characterized, the nonlytic alterations on RBCs, such as increased permeability to Ca<sup>2+</sup>, osmotic imbalance, and morphological alterations, remain less understood and may be critical in UPEC pathogenesis. This study investigates the impact of these nonlytic alterations on the rheology and mechanics of RBCs using two biomimetic microfluidic devices that model key aspects of RBCs' circulation. In the first device, which mimics the mechanical deformation of RBCs in narrow capillaries, HlyA sublytic concentrations were found to significantly impair RBC deformability. These changes were accompanied by an increase in cytosolic Ca<sup>2+</sup> and volume expansion. In contrast, the nonacylated protoxin ProHlyA neither impaired the deformability of RBCs nor triggered changes in cytosolic Ca<sup>2+</sup> or cell volume. The second device, which simulates the RBCs' filtration by the spleen's red pulp, revealed that HlyA, but not ProHlyA, increased RBCs' retention in small gaps resembling splenic fenestrations. The extent of RBCs' retention was partially mitigated by blocking purinergic signaling, indicating a contribution of the HlyA-induced volume increase in this process. Our results suggest that the increase in cytosolic Ca<sup>2+</sup> elicited by HlyA impacts RBCs' circulation by decreasing RBCs' deformability and increasing spleen retention. However, this impairment of RBCs' performance can function as a defense mechanism to aid in the retention of HlyA-bound RBCs, removing them from circulation, and potentially preventing vascular hemolysis.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Escherichia coli α-hemolysin induces red blood cell retention in a microfluidic spleen-like device.\",\"authors\":\"Nicolás Andrés Saffioti, Emilia Belén Sousa, Mickaël Marin, María Florencia Leal Denis, Mariano Aníbal Ostuni, Vanesa Herlax, Pablo Julio Schwarzbaum, Diego Pallarola\",\"doi\":\"10.1016/j.bpj.2025.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>α-hemolysin (HlyA) is a major exotoxin secreted by uropathogenic Escherichia coli (UPEC), known for its ability to lyse red blood cells (RBCs). Although its lytic effects are well characterized, the nonlytic alterations on RBCs, such as increased permeability to Ca<sup>2+</sup>, osmotic imbalance, and morphological alterations, remain less understood and may be critical in UPEC pathogenesis. This study investigates the impact of these nonlytic alterations on the rheology and mechanics of RBCs using two biomimetic microfluidic devices that model key aspects of RBCs' circulation. In the first device, which mimics the mechanical deformation of RBCs in narrow capillaries, HlyA sublytic concentrations were found to significantly impair RBC deformability. These changes were accompanied by an increase in cytosolic Ca<sup>2+</sup> and volume expansion. In contrast, the nonacylated protoxin ProHlyA neither impaired the deformability of RBCs nor triggered changes in cytosolic Ca<sup>2+</sup> or cell volume. The second device, which simulates the RBCs' filtration by the spleen's red pulp, revealed that HlyA, but not ProHlyA, increased RBCs' retention in small gaps resembling splenic fenestrations. The extent of RBCs' retention was partially mitigated by blocking purinergic signaling, indicating a contribution of the HlyA-induced volume increase in this process. Our results suggest that the increase in cytosolic Ca<sup>2+</sup> elicited by HlyA impacts RBCs' circulation by decreasing RBCs' deformability and increasing spleen retention. However, this impairment of RBCs' performance can function as a defense mechanism to aid in the retention of HlyA-bound RBCs, removing them from circulation, and potentially preventing vascular hemolysis.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2025.03.001\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.03.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

α-溶血素(HlyA)是尿路致病性大肠杆菌(UPEC)分泌的一种主要外毒素,以其溶解红细胞(rbc)的能力而闻名。虽然其溶解作用已被很好地表征,但对红细胞的非溶解性改变,如对Ca2+的渗透性增加,渗透失衡和形态改变,仍然知之甚少,可能是UPEC发病的关键。本研究使用两种模拟红细胞循环关键方面的仿生微流体装置来研究这些非溶解性改变对红细胞流变学和力学的影响。在第一种装置中,模拟红细胞在狭窄毛细血管中的机械变形,HlyA亚溶解浓度被发现显著损害红细胞的变形能力。这些变化伴随着胞质Ca2+的增加和体积的扩大。相反,非酰化的原蛋白ProHlyA既不会损害红细胞的变形能力,也不会引发胞浆Ca2+或细胞体积的变化。第二个装置模拟红细胞通过脾脏红髓的过滤,结果显示HlyA而不是ProHlyA增加了红细胞在类似脾开孔的小间隙中的滞留。通过阻断嘌呤能信号传导,部分减轻了红细胞的保留程度,表明hlya诱导的体积增加在这一过程中有所贡献。我们的研究结果表明,HlyA引起的胞质Ca2+的增加通过降低红细胞的可变形性和增加脾脏保留来影响红细胞的循环。然而,这种红细胞功能的损害可以作为一种防御机制,帮助hlya结合的红细胞保留,将它们从循环中清除,并潜在地防止血管溶血。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Escherichia coli α-hemolysin induces red blood cell retention in a microfluidic spleen-like device.

α-hemolysin (HlyA) is a major exotoxin secreted by uropathogenic Escherichia coli (UPEC), known for its ability to lyse red blood cells (RBCs). Although its lytic effects are well characterized, the nonlytic alterations on RBCs, such as increased permeability to Ca2+, osmotic imbalance, and morphological alterations, remain less understood and may be critical in UPEC pathogenesis. This study investigates the impact of these nonlytic alterations on the rheology and mechanics of RBCs using two biomimetic microfluidic devices that model key aspects of RBCs' circulation. In the first device, which mimics the mechanical deformation of RBCs in narrow capillaries, HlyA sublytic concentrations were found to significantly impair RBC deformability. These changes were accompanied by an increase in cytosolic Ca2+ and volume expansion. In contrast, the nonacylated protoxin ProHlyA neither impaired the deformability of RBCs nor triggered changes in cytosolic Ca2+ or cell volume. The second device, which simulates the RBCs' filtration by the spleen's red pulp, revealed that HlyA, but not ProHlyA, increased RBCs' retention in small gaps resembling splenic fenestrations. The extent of RBCs' retention was partially mitigated by blocking purinergic signaling, indicating a contribution of the HlyA-induced volume increase in this process. Our results suggest that the increase in cytosolic Ca2+ elicited by HlyA impacts RBCs' circulation by decreasing RBCs' deformability and increasing spleen retention. However, this impairment of RBCs' performance can function as a defense mechanism to aid in the retention of HlyA-bound RBCs, removing them from circulation, and potentially preventing vascular hemolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信