利用Halbach阵列和磁性纳米颗粒控制人iPSC-CM合胞体的心波。

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Maria R Pozo, Yuli W Heinson, Christianne J Chua, Emilia Entcheva
{"title":"利用Halbach阵列和磁性纳米颗粒控制人iPSC-CM合胞体的心波。","authors":"Maria R Pozo, Yuli W Heinson, Christianne J Chua, Emilia Entcheva","doi":"10.1016/j.bpj.2025.03.006","DOIUrl":null,"url":null,"abstract":"<p><p>The Halbach array, originally developed for particle accelerators, is a compact arrangement of permanent magnets that creates well-defined magnetic fields without heating. Here, we demonstrate its use for modulating the speed of electromechanical waves in cardiac syncytia of human stem cell-derived cardiomyocytes. At 40-50 mT magnetic field strength, a cylindrical dipolar Halbach array boosted the conduction velocity (CV) by up to 25% when the magnetic field was co-aligned with the electromechanical wave (but not when perpendicular to it). To observe the effects, a short-term incubation of the cardiac cell constructs with non-targeted magnetic nanoparticles (mNPs) was sufficient. This led to increased CV anisotropy, and effects were most pronounced at slower pacing rates. Instantaneous formation and rearrangement of elongated mNP clusters upon magnetic-field rotation was seen, creating dynamic structural anisotropy that may have contributed to the directional CV effects. This approach may be useful for anti-arrhythmic control of cardiac waves.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of cardiac waves in human iPSC-CM syncytia by a Halbach array and magnetic nanoparticles.\",\"authors\":\"Maria R Pozo, Yuli W Heinson, Christianne J Chua, Emilia Entcheva\",\"doi\":\"10.1016/j.bpj.2025.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Halbach array, originally developed for particle accelerators, is a compact arrangement of permanent magnets that creates well-defined magnetic fields without heating. Here, we demonstrate its use for modulating the speed of electromechanical waves in cardiac syncytia of human stem cell-derived cardiomyocytes. At 40-50 mT magnetic field strength, a cylindrical dipolar Halbach array boosted the conduction velocity (CV) by up to 25% when the magnetic field was co-aligned with the electromechanical wave (but not when perpendicular to it). To observe the effects, a short-term incubation of the cardiac cell constructs with non-targeted magnetic nanoparticles (mNPs) was sufficient. This led to increased CV anisotropy, and effects were most pronounced at slower pacing rates. Instantaneous formation and rearrangement of elongated mNP clusters upon magnetic-field rotation was seen, creating dynamic structural anisotropy that may have contributed to the directional CV effects. This approach may be useful for anti-arrhythmic control of cardiac waves.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2025.03.006\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.03.006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

哈尔巴赫阵列,最初是为粒子加速器开发的,是一种紧凑的永磁体排列,可以在不加热的情况下产生明确的磁场。在这里,我们展示了它在人类干细胞来源的心肌细胞心脏合胞体中调节机电波速度的用途。在40-50 mT的磁场强度下,当磁场与机电波共列时(而不是垂直于机电波时),圆柱形偶极Halbach阵列将传导速度CV提高了25%。为了观察效果,用非靶向磁性纳米颗粒(mNPs)对心肌细胞进行短期孵育就足够了。这导致CV各向异性增加,并且在较慢的起搏速率下效果最为明显。在磁场旋转时,可以看到细长mNP团簇的瞬时形成和重新排列,从而产生动态结构各向异性,这可能是导致定向CV效应的原因。这种方法可能有助于心波的抗心律失常控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of cardiac waves in human iPSC-CM syncytia by a Halbach array and magnetic nanoparticles.

The Halbach array, originally developed for particle accelerators, is a compact arrangement of permanent magnets that creates well-defined magnetic fields without heating. Here, we demonstrate its use for modulating the speed of electromechanical waves in cardiac syncytia of human stem cell-derived cardiomyocytes. At 40-50 mT magnetic field strength, a cylindrical dipolar Halbach array boosted the conduction velocity (CV) by up to 25% when the magnetic field was co-aligned with the electromechanical wave (but not when perpendicular to it). To observe the effects, a short-term incubation of the cardiac cell constructs with non-targeted magnetic nanoparticles (mNPs) was sufficient. This led to increased CV anisotropy, and effects were most pronounced at slower pacing rates. Instantaneous formation and rearrangement of elongated mNP clusters upon magnetic-field rotation was seen, creating dynamic structural anisotropy that may have contributed to the directional CV effects. This approach may be useful for anti-arrhythmic control of cardiac waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信