电化学生物传感在肿瘤诊断中的研究进展及展望。

IF 4.6 4区 医学 Q2 ONCOLOGY
Cancer Biology & Therapy Pub Date : 2025-12-01 Epub Date: 2025-03-13 DOI:10.1080/15384047.2025.2475581
Sana Noreen, Izwa Ishaq, Muhammad Hamzah Saleem, Baber Ali, Syed Muhammad Ali, Javed Iqbal
{"title":"电化学生物传感在肿瘤诊断中的研究进展及展望。","authors":"Sana Noreen, Izwa Ishaq, Muhammad Hamzah Saleem, Baber Ali, Syed Muhammad Ali, Javed Iqbal","doi":"10.1080/15384047.2025.2475581","DOIUrl":null,"url":null,"abstract":"<p><p>Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2475581"},"PeriodicalIF":4.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913392/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis.\",\"authors\":\"Sana Noreen, Izwa Ishaq, Muhammad Hamzah Saleem, Baber Ali, Syed Muhammad Ali, Javed Iqbal\",\"doi\":\"10.1080/15384047.2025.2475581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"26 1\",\"pages\":\"2475581\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913392/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2025.2475581\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2475581","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症的早期准确诊断是有效治疗干预的关键。传统的诊断方法尽管具有可靠性,但往往面临诸如侵入性、高成本、劳动密集型程序、处理时间延长以及早期检测灵敏度降低等限制。电化学生物传感是一种革命性的方法,它提供了快速、经济、高灵敏度的癌症生物标志物检测。这篇综述讨论了电化学检测在生物传感器中的应用,以提供对疾病特异性分子相互作用的实时洞察,重点是目标识别和信号产生机制。此外,与传统技术相比,电化学生物传感器的优越功效也得到了探讨,特别是在其检测癌症生物标志物的能力方面,具有更高的特异性和敏感性。电极材料和纳米结构设计的进步,整合了纳米技术、微流体和人工智能,有可能克服生物干扰并扩大临床应用规模。尽管在商业可行性和实际应用方面存在挑战,但肿瘤诊断的研究和创新仍具有个性化医疗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis.

Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis.

Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis.

Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis.

Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信