Sana Noreen, Izwa Ishaq, Muhammad Hamzah Saleem, Baber Ali, Syed Muhammad Ali, Javed Iqbal
{"title":"电化学生物传感在肿瘤诊断中的研究进展及展望。","authors":"Sana Noreen, Izwa Ishaq, Muhammad Hamzah Saleem, Baber Ali, Syed Muhammad Ali, Javed Iqbal","doi":"10.1080/15384047.2025.2475581","DOIUrl":null,"url":null,"abstract":"<p><p>Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2475581"},"PeriodicalIF":4.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913392/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis.\",\"authors\":\"Sana Noreen, Izwa Ishaq, Muhammad Hamzah Saleem, Baber Ali, Syed Muhammad Ali, Javed Iqbal\",\"doi\":\"10.1080/15384047.2025.2475581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"26 1\",\"pages\":\"2475581\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913392/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2025.2475581\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2475581","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis.
Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.