优化大气挥发性有机化合物分析中活性炭被动采样器的溶剂萃取方法:最大限度地减少预处理溶剂的分析干扰并确保定量可靠性。

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Se-Eun Jang, Yong-Hyun Kim
{"title":"优化大气挥发性有机化合物分析中活性炭被动采样器的溶剂萃取方法:最大限度地减少预处理溶剂的分析干扰并确保定量可靠性。","authors":"Se-Eun Jang, Yong-Hyun Kim","doi":"10.1007/s00216-025-05814-2","DOIUrl":null,"url":null,"abstract":"<p><p>A passive sampler was used to effectively monitor trace volatile organic compound (VOC) concentrations in the atmosphere. VOCs are typically extracted from passive samplers using CS<sub>2</sub>, which is a volatile and hazardous chemical that can leave residues and damage the mass spectrometry (MS) system during gas chromatography (GC)-MS. This study aims to develop and validate alternative solvent extraction methods using acetone, ethanol, n-hexane, and a solution of 99% acetone and 1% CS<sub>2</sub> (ATCS) for VOCs from passive samplers using a standard GC-MS system. ATCS had the highest VOC extraction efficiency with the average value of 42.4 ± 21.4%, followed by acetone at 29.9 ± 17.6%. Ethanol and n-hexane exhibited extraction efficiencies of less than 9%. Despite the ATCS extraction efficiency of less than 50%, it demonstrated excellent analytical reproducibility (relative standard deviation of 1.62 ± 0.64%) and detection limit of 20.5 ± 12.9 ppt, which was significantly lower than 1 ppb. When used to extract and analyze VOCs from ambient air samples, ATCS yielded VOC concentrations of 0.57 ± 0.33 ppb, consistent with urban air levels. The variance in the outdoor VOC concentrations was less than 0.1 ppb, confirming its high reproducibility. Thus, the ATCS solvent extraction method developed in this study enables the accurate quantification of trace VOCs below 1 ppb, reduces MS damage, and mitigates health risks to analysts using GC-MS.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing solvent extraction methods for activated carbon-based passive samplers in atmospheric volatile organic compound analysis: minimizing analytical interferences from pretreatment solvents and ensuring quantitative reliability.\",\"authors\":\"Se-Eun Jang, Yong-Hyun Kim\",\"doi\":\"10.1007/s00216-025-05814-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A passive sampler was used to effectively monitor trace volatile organic compound (VOC) concentrations in the atmosphere. VOCs are typically extracted from passive samplers using CS<sub>2</sub>, which is a volatile and hazardous chemical that can leave residues and damage the mass spectrometry (MS) system during gas chromatography (GC)-MS. This study aims to develop and validate alternative solvent extraction methods using acetone, ethanol, n-hexane, and a solution of 99% acetone and 1% CS<sub>2</sub> (ATCS) for VOCs from passive samplers using a standard GC-MS system. ATCS had the highest VOC extraction efficiency with the average value of 42.4 ± 21.4%, followed by acetone at 29.9 ± 17.6%. Ethanol and n-hexane exhibited extraction efficiencies of less than 9%. Despite the ATCS extraction efficiency of less than 50%, it demonstrated excellent analytical reproducibility (relative standard deviation of 1.62 ± 0.64%) and detection limit of 20.5 ± 12.9 ppt, which was significantly lower than 1 ppb. When used to extract and analyze VOCs from ambient air samples, ATCS yielded VOC concentrations of 0.57 ± 0.33 ppb, consistent with urban air levels. The variance in the outdoor VOC concentrations was less than 0.1 ppb, confirming its high reproducibility. Thus, the ATCS solvent extraction method developed in this study enables the accurate quantification of trace VOCs below 1 ppb, reduces MS damage, and mitigates health risks to analysts using GC-MS.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-025-05814-2\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05814-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

采用被动采样器对大气中痕量挥发性有机化合物(VOC)浓度进行了有效监测。VOCs通常使用CS2从被动采样器中提取,CS2是一种挥发性有害化学物质,在气相色谱(GC)-MS过程中会留下残留物并损坏质谱(MS)系统。本研究旨在开发和验证使用丙酮、乙醇、正己烷和99%丙酮和1% CS2 (ATCS)溶液的替代溶剂萃取方法,使用标准的GC-MS系统从被动采样器中提取VOCs。ATCS对VOC的提取效率最高,平均为42.4±21.4%,丙酮次之,为29.9±17.6%。乙醇和正己烷的萃取效率均小于9%。尽管ATCS提取效率低于50%,但具有良好的分析重现性(相对标准偏差为1.62±0.64%),检出限为20.5±12.9 ppt,显著低于1 ppb。当用于从环境空气样本中提取和分析VOC时,ATCS产生的VOC浓度为0.57±0.33 ppb,与城市空气水平一致。室外VOC浓度的差异小于0.1 ppb,证实了其高重复性。因此,本研究开发的ATCS溶剂萃取方法能够准确定量1 ppb以下的痕量VOCs,减少了质谱损伤,并减轻了使用GC-MS分析人员的健康风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing solvent extraction methods for activated carbon-based passive samplers in atmospheric volatile organic compound analysis: minimizing analytical interferences from pretreatment solvents and ensuring quantitative reliability.

A passive sampler was used to effectively monitor trace volatile organic compound (VOC) concentrations in the atmosphere. VOCs are typically extracted from passive samplers using CS2, which is a volatile and hazardous chemical that can leave residues and damage the mass spectrometry (MS) system during gas chromatography (GC)-MS. This study aims to develop and validate alternative solvent extraction methods using acetone, ethanol, n-hexane, and a solution of 99% acetone and 1% CS2 (ATCS) for VOCs from passive samplers using a standard GC-MS system. ATCS had the highest VOC extraction efficiency with the average value of 42.4 ± 21.4%, followed by acetone at 29.9 ± 17.6%. Ethanol and n-hexane exhibited extraction efficiencies of less than 9%. Despite the ATCS extraction efficiency of less than 50%, it demonstrated excellent analytical reproducibility (relative standard deviation of 1.62 ± 0.64%) and detection limit of 20.5 ± 12.9 ppt, which was significantly lower than 1 ppb. When used to extract and analyze VOCs from ambient air samples, ATCS yielded VOC concentrations of 0.57 ± 0.33 ppb, consistent with urban air levels. The variance in the outdoor VOC concentrations was less than 0.1 ppb, confirming its high reproducibility. Thus, the ATCS solvent extraction method developed in this study enables the accurate quantification of trace VOCs below 1 ppb, reduces MS damage, and mitigates health risks to analysts using GC-MS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信