温度与增强量对机械合金化TiC增强amc磨损性能的影响

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Dogan Simsek, Dursun Ozyurek
{"title":"温度与增强量对机械合金化TiC增强amc磨损性能的影响","authors":"Dogan Simsek,&nbsp;Dursun Ozyurek","doi":"10.1134/S1067821224600960","DOIUrl":null,"url":null,"abstract":"<p>In this study, the wear performance of TiC reinforced A356 matrix composite materials produced by the mechanical alloying method at high temperatures was investigated. As a solid lubricant, 2% graphite, and four different amounts (3, 6, 9, and 12%) of TiC were added to the A356 alloy matrix. The prepared powders were mechanically alloyed in a planetary mill for 4 h. The composite powders produced were cold shaped (750 MPa) to obtain green compacts. The green compacts produced were sintered at 550°C for 60 min in a vacuum environment of 10<sup>–6</sup> mbar. TiC reinforced AMCs have been characterized by microstructure, hardness, and density measurements. Wear tests were carried out in a standard pin on disc type wear tester by adding a temperature module. In wear tests, two different loads (10 and 30 N), five different temperatures (20, 100, 180, 260, and 340°C), and three different sliding distances (53, 72, and 94 m) have been used. As a result of microstructure studies, it has been observed that the reinforcement material exhibits a homogeneous distribution in the structure. In hardness and density measurements, the highest hardness and density were obtained in the composite material with 12% TiC added. As a result of wear tests, the lowest weight loss was obtained in the composite material with 12% TiC added at all operating temperatures.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"65 3","pages":"133 - 141"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Relationship between Temperature and Reinforcement Amount in the Wear Performance of TiC Reinforced AMCs Produced by Mechanical Alloying Method\",\"authors\":\"Dogan Simsek,&nbsp;Dursun Ozyurek\",\"doi\":\"10.1134/S1067821224600960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the wear performance of TiC reinforced A356 matrix composite materials produced by the mechanical alloying method at high temperatures was investigated. As a solid lubricant, 2% graphite, and four different amounts (3, 6, 9, and 12%) of TiC were added to the A356 alloy matrix. The prepared powders were mechanically alloyed in a planetary mill for 4 h. The composite powders produced were cold shaped (750 MPa) to obtain green compacts. The green compacts produced were sintered at 550°C for 60 min in a vacuum environment of 10<sup>–6</sup> mbar. TiC reinforced AMCs have been characterized by microstructure, hardness, and density measurements. Wear tests were carried out in a standard pin on disc type wear tester by adding a temperature module. In wear tests, two different loads (10 and 30 N), five different temperatures (20, 100, 180, 260, and 340°C), and three different sliding distances (53, 72, and 94 m) have been used. As a result of microstructure studies, it has been observed that the reinforcement material exhibits a homogeneous distribution in the structure. In hardness and density measurements, the highest hardness and density were obtained in the composite material with 12% TiC added. As a result of wear tests, the lowest weight loss was obtained in the composite material with 12% TiC added at all operating temperatures.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":\"65 3\",\"pages\":\"133 - 141\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1067821224600960\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821224600960","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了机械合金化法制备的TiC增强A356基复合材料在高温下的磨损性能。作为固体润滑剂,在A356合金基体中添加2%石墨和4种不同量(3、6、9和12%)的TiC。制备的粉末在行星磨机中机械合金化4h,制备的复合粉末进行冷成形(750 MPa),得到绿色粉末。在10-6毫巴的真空环境中,在550°C下烧结60分钟。通过显微组织、硬度和密度测量对TiC增强的amc进行了表征。通过增加温度模块,在标准销盘式磨损试验机上进行磨损试验。在磨损试验中,使用了两种不同的载荷(10和30牛)、五种不同的温度(20、100、180、260和340°C)和三种不同的滑动距离(53、72和94 m)。微观结构研究表明,增强材料在结构中呈均匀分布。在硬度和密度测试中,添加12% TiC的复合材料硬度和密度最高。磨损试验结果表明,在所有工作温度下,添加12% TiC的复合材料的重量损失最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Relationship between Temperature and Reinforcement Amount in the Wear Performance of TiC Reinforced AMCs Produced by Mechanical Alloying Method

The Relationship between Temperature and Reinforcement Amount in the Wear Performance of TiC Reinforced AMCs Produced by Mechanical Alloying Method

In this study, the wear performance of TiC reinforced A356 matrix composite materials produced by the mechanical alloying method at high temperatures was investigated. As a solid lubricant, 2% graphite, and four different amounts (3, 6, 9, and 12%) of TiC were added to the A356 alloy matrix. The prepared powders were mechanically alloyed in a planetary mill for 4 h. The composite powders produced were cold shaped (750 MPa) to obtain green compacts. The green compacts produced were sintered at 550°C for 60 min in a vacuum environment of 10–6 mbar. TiC reinforced AMCs have been characterized by microstructure, hardness, and density measurements. Wear tests were carried out in a standard pin on disc type wear tester by adding a temperature module. In wear tests, two different loads (10 and 30 N), five different temperatures (20, 100, 180, 260, and 340°C), and three different sliding distances (53, 72, and 94 m) have been used. As a result of microstructure studies, it has been observed that the reinforcement material exhibits a homogeneous distribution in the structure. In hardness and density measurements, the highest hardness and density were obtained in the composite material with 12% TiC added. As a result of wear tests, the lowest weight loss was obtained in the composite material with 12% TiC added at all operating temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信