{"title":"含柠檬烯废物转化为可酯交换生物脂的微生物:评价产油细菌分离物","authors":"Faqin Lian, Samia Qadeer, Muzammil Anjum, Shang-Tian Yang, Shahid Mahmood, Abubakr. M. Idris, Azeem Khalid, Habib Ullah, Qing Huang, Zepeng Rao","doi":"10.1007/s00203-025-04276-5","DOIUrl":null,"url":null,"abstract":"<div><p>Bio-oil is increasingly recognized as a sustainable and eco-friendly energy source, offering a viable alternative to petro-diesel. This study evaluates the bio-oil production potential of a novel oleaginous strain, KM9 (<i>Serratia surfactantfaciens</i> YD25) compared with the known oleaginous species <i>R. erythropolis</i>. Growth conditions and nutrient requirements were optimized for both strains to maximize biomass production and lipid accumulation. Utilizing orange waste as a substrate not only contributes to waste minimization but also provides a renewable carbon source for microbial lipid synthesis. KM9 demonstrated exceptional performance, achieving 50% reduction in organic matter from the orange waste while simultaneously accumulating lipids upto 38% of its dry cell weight. Gas chromatography-mass spectrometry (GC–MS) analysis of the transesterified lipids revealed that both KM9 and <i>R. erythropoliss</i> produced comparable levels of saturated fatty acids (38.39% and 39%, respectively), when cultivated in limonene-modified media. Notably, the use of orange waste stimulated the production of monounsaturated fatty acids (MUFAs), particularly palmitic and stearic acids, resulting in a lipid profile closely resembling that of plant-based bio-oils. These findings highlight the promising potential of the oleaginous strain KM9 for producing microbial lipids from orange waste, contributing to sustainable biodiesel production and effectively valorizing a significant agricultural waste stream.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial conversion of Limonene-containing waste into transesterifiable bio-lipids: Evaluating oleaginous bacterial isolates\",\"authors\":\"Faqin Lian, Samia Qadeer, Muzammil Anjum, Shang-Tian Yang, Shahid Mahmood, Abubakr. M. Idris, Azeem Khalid, Habib Ullah, Qing Huang, Zepeng Rao\",\"doi\":\"10.1007/s00203-025-04276-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bio-oil is increasingly recognized as a sustainable and eco-friendly energy source, offering a viable alternative to petro-diesel. This study evaluates the bio-oil production potential of a novel oleaginous strain, KM9 (<i>Serratia surfactantfaciens</i> YD25) compared with the known oleaginous species <i>R. erythropolis</i>. Growth conditions and nutrient requirements were optimized for both strains to maximize biomass production and lipid accumulation. Utilizing orange waste as a substrate not only contributes to waste minimization but also provides a renewable carbon source for microbial lipid synthesis. KM9 demonstrated exceptional performance, achieving 50% reduction in organic matter from the orange waste while simultaneously accumulating lipids upto 38% of its dry cell weight. Gas chromatography-mass spectrometry (GC–MS) analysis of the transesterified lipids revealed that both KM9 and <i>R. erythropoliss</i> produced comparable levels of saturated fatty acids (38.39% and 39%, respectively), when cultivated in limonene-modified media. Notably, the use of orange waste stimulated the production of monounsaturated fatty acids (MUFAs), particularly palmitic and stearic acids, resulting in a lipid profile closely resembling that of plant-based bio-oils. These findings highlight the promising potential of the oleaginous strain KM9 for producing microbial lipids from orange waste, contributing to sustainable biodiesel production and effectively valorizing a significant agricultural waste stream.</p></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"207 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-025-04276-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04276-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Microbial conversion of Limonene-containing waste into transesterifiable bio-lipids: Evaluating oleaginous bacterial isolates
Bio-oil is increasingly recognized as a sustainable and eco-friendly energy source, offering a viable alternative to petro-diesel. This study evaluates the bio-oil production potential of a novel oleaginous strain, KM9 (Serratia surfactantfaciens YD25) compared with the known oleaginous species R. erythropolis. Growth conditions and nutrient requirements were optimized for both strains to maximize biomass production and lipid accumulation. Utilizing orange waste as a substrate not only contributes to waste minimization but also provides a renewable carbon source for microbial lipid synthesis. KM9 demonstrated exceptional performance, achieving 50% reduction in organic matter from the orange waste while simultaneously accumulating lipids upto 38% of its dry cell weight. Gas chromatography-mass spectrometry (GC–MS) analysis of the transesterified lipids revealed that both KM9 and R. erythropoliss produced comparable levels of saturated fatty acids (38.39% and 39%, respectively), when cultivated in limonene-modified media. Notably, the use of orange waste stimulated the production of monounsaturated fatty acids (MUFAs), particularly palmitic and stearic acids, resulting in a lipid profile closely resembling that of plant-based bio-oils. These findings highlight the promising potential of the oleaginous strain KM9 for producing microbial lipids from orange waste, contributing to sustainable biodiesel production and effectively valorizing a significant agricultural waste stream.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.