多曝光3D PTV的非对称时间序列

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Fulvio Scarano, Ilda Hysa, Adrian Grille Guerra, Marthijn Tuinstra, Andrea Sciacchitano
{"title":"多曝光3D PTV的非对称时间序列","authors":"Fulvio Scarano,&nbsp;Ilda Hysa,&nbsp;Adrian Grille Guerra,&nbsp;Marthijn Tuinstra,&nbsp;Andrea Sciacchitano","doi":"10.1007/s00348-025-03993-3","DOIUrl":null,"url":null,"abstract":"<div><p>Recording onto a single-frame multiple exposures of the tracer particles has the potential to simplify the hardware needed for 3D PTV measurements, especially when dealing with high-speed flows. The analysis of such recordings, however, is challenged by the unknown <i>time tag</i> of each particle exposure, alongside their unknown organization into physical trajectories (<i>trajectory tag</i>). Using a sequence of two or more illumination pulses with a constant time separation leads to the well-known <i>directional ambiguity</i> problem, whereby it is not possible to distinguish the direction of motion of the tracer particles. Instead, an irregular and asymmetric sequence of time separation for the illumination pulses allows recognizing the <i>time tag</i> of the unique sequence of positions in the image, composing the <i>trace</i>. A criterion is formulated here that recognizes unambiguously the <i>trace</i> pattern, based upon the principle of kinematic similarity. A combinatorial algorithm is proposed whereby a signal-to-noise ratio is introduced for every candidate trace. The approach is combined with an additional criterion that favors trace regularity (minimum velocity fluctuations). The algorithm is illustrated making use of particle motion examples. Furthermore, it is assessed using 3D experimental data produced with time-resolved analysis (single-frame, single-exposure) using the <i>Shake-the-Box</i> method. Traces with a three-pulse sequence yield a detection rate of 85%. The latter declines with the number of pulses. Conversely, the error rate rapidly vanishes with the samples number, which confirms the reliability of trace detection criterion when more pulses are comprised in the sequence.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-03993-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Asymmetric time sequence for multiple-exposure 3D PTV\",\"authors\":\"Fulvio Scarano,&nbsp;Ilda Hysa,&nbsp;Adrian Grille Guerra,&nbsp;Marthijn Tuinstra,&nbsp;Andrea Sciacchitano\",\"doi\":\"10.1007/s00348-025-03993-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recording onto a single-frame multiple exposures of the tracer particles has the potential to simplify the hardware needed for 3D PTV measurements, especially when dealing with high-speed flows. The analysis of such recordings, however, is challenged by the unknown <i>time tag</i> of each particle exposure, alongside their unknown organization into physical trajectories (<i>trajectory tag</i>). Using a sequence of two or more illumination pulses with a constant time separation leads to the well-known <i>directional ambiguity</i> problem, whereby it is not possible to distinguish the direction of motion of the tracer particles. Instead, an irregular and asymmetric sequence of time separation for the illumination pulses allows recognizing the <i>time tag</i> of the unique sequence of positions in the image, composing the <i>trace</i>. A criterion is formulated here that recognizes unambiguously the <i>trace</i> pattern, based upon the principle of kinematic similarity. A combinatorial algorithm is proposed whereby a signal-to-noise ratio is introduced for every candidate trace. The approach is combined with an additional criterion that favors trace regularity (minimum velocity fluctuations). The algorithm is illustrated making use of particle motion examples. Furthermore, it is assessed using 3D experimental data produced with time-resolved analysis (single-frame, single-exposure) using the <i>Shake-the-Box</i> method. Traces with a three-pulse sequence yield a detection rate of 85%. The latter declines with the number of pulses. Conversely, the error rate rapidly vanishes with the samples number, which confirms the reliability of trace detection criterion when more pulses are comprised in the sequence.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00348-025-03993-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-025-03993-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-03993-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

将示踪颗粒的多次曝光记录到单帧上,有可能简化3D PTV测量所需的硬件,特别是在处理高速流时。然而,对这些记录的分析受到每个粒子暴露的未知时间标签以及它们在物理轨迹中的未知组织(轨迹标签)的挑战。使用具有恒定时间间隔的两个或多个照明脉冲序列会导致众所周知的方向模糊问题,即不可能区分示踪粒子的运动方向。相反,照明脉冲的不规则和非对称时间分离序列允许识别图像中唯一位置序列的时间标记,组成痕迹。根据运动相似的原理,在这里制定了一个准则,明确地识别轨迹模式。提出了一种组合算法,其中每个候选迹线引入信噪比。该方法与有利于跟踪规律性(最小速度波动)的附加准则相结合。通过粒子运动实例对该算法进行了说明。此外,使用时间分辨分析(单帧,单曝光)产生的3D实验数据,使用摇盒方法对其进行评估。具有三脉冲序列的走线产生85%的检测率。后者随脉冲数的增加而减小。相反,错误率随样本数的增加而迅速消失,当序列中包含更多脉冲时,证实了痕量检测准则的可靠性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric time sequence for multiple-exposure 3D PTV

Recording onto a single-frame multiple exposures of the tracer particles has the potential to simplify the hardware needed for 3D PTV measurements, especially when dealing with high-speed flows. The analysis of such recordings, however, is challenged by the unknown time tag of each particle exposure, alongside their unknown organization into physical trajectories (trajectory tag). Using a sequence of two or more illumination pulses with a constant time separation leads to the well-known directional ambiguity problem, whereby it is not possible to distinguish the direction of motion of the tracer particles. Instead, an irregular and asymmetric sequence of time separation for the illumination pulses allows recognizing the time tag of the unique sequence of positions in the image, composing the trace. A criterion is formulated here that recognizes unambiguously the trace pattern, based upon the principle of kinematic similarity. A combinatorial algorithm is proposed whereby a signal-to-noise ratio is introduced for every candidate trace. The approach is combined with an additional criterion that favors trace regularity (minimum velocity fluctuations). The algorithm is illustrated making use of particle motion examples. Furthermore, it is assessed using 3D experimental data produced with time-resolved analysis (single-frame, single-exposure) using the Shake-the-Box method. Traces with a three-pulse sequence yield a detection rate of 85%. The latter declines with the number of pulses. Conversely, the error rate rapidly vanishes with the samples number, which confirms the reliability of trace detection criterion when more pulses are comprised in the sequence.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信