Ajay Kumar, Sheerin Masroor, Savaş Kaya, Konstantin P. Katin, Avni Berisha, Mohammad Ehtisham Khan, Wahid Ali, Syed Kashif Ali, Mohammad S. Alomar, Abdullateef H. Bashiri, Waleed Zakri
{"title":"可持续的杂环芳基磺酰胺衍生物的合成:计算研究、分子对接和抗菌评估","authors":"Ajay Kumar, Sheerin Masroor, Savaş Kaya, Konstantin P. Katin, Avni Berisha, Mohammad Ehtisham Khan, Wahid Ali, Syed Kashif Ali, Mohammad S. Alomar, Abdullateef H. Bashiri, Waleed Zakri","doi":"10.1007/s13233-024-00335-w","DOIUrl":null,"url":null,"abstract":"<div><p>The treatment of infectious diseases is impacted by the emergence of multidrug-resistant microbiological infections. Due to the long-term usage of antibacterial clinical drugs, microbes develop resistance to clinical drugs. To take advantage of the potential of these families of chemicals, several derivatives of thiophene containing p-toluene sulfonamide (TPS) were prepared using an eco-friendly method with high yields. These synthetic derivatives had a wide range of structural diversity to demonstrate a structure–activity link. In multi-component reaction (MCR), the versatile reactants (1 mmol) react for up to 6–8 h at pH 7.2 ± 0.2 and temperature 70 ± 1 °C. The reaction involved the reusable organic catalyst <span>l</span>-Proline (1 mol%), and the mechanisms through a Knoevenagel condensation pathway, which has the advantage of effectively producing the described thiophene derivatives (TD). Then, further TD reacts with p-toluene sulfonamide (Tosyl-Cl) at 0 °C within 10–12 h to provide the final product TPS. The present investigation provides an inexpensive and eco-friendly method of TPS derivatives. A perusal of the tables indicates that TPS derivatives exhibited promising activity against S. typhimurium as compared to E. coli and S. aureus. The compounds having good activity contained electron-withdrawing as well as electron-donating substituent groups on the benzaldehyde benzene ring of the amino part of the amide.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>\nGreen sustainable development of multi component heterocyclic aryl sulfonamide reaction</p></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 3","pages":"331 - 344"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of sustainable heterocyclic aryl sulfonamide derivatives: computational studies, molecular docking, and antibacterial assessment\",\"authors\":\"Ajay Kumar, Sheerin Masroor, Savaş Kaya, Konstantin P. Katin, Avni Berisha, Mohammad Ehtisham Khan, Wahid Ali, Syed Kashif Ali, Mohammad S. Alomar, Abdullateef H. Bashiri, Waleed Zakri\",\"doi\":\"10.1007/s13233-024-00335-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The treatment of infectious diseases is impacted by the emergence of multidrug-resistant microbiological infections. Due to the long-term usage of antibacterial clinical drugs, microbes develop resistance to clinical drugs. To take advantage of the potential of these families of chemicals, several derivatives of thiophene containing p-toluene sulfonamide (TPS) were prepared using an eco-friendly method with high yields. These synthetic derivatives had a wide range of structural diversity to demonstrate a structure–activity link. In multi-component reaction (MCR), the versatile reactants (1 mmol) react for up to 6–8 h at pH 7.2 ± 0.2 and temperature 70 ± 1 °C. The reaction involved the reusable organic catalyst <span>l</span>-Proline (1 mol%), and the mechanisms through a Knoevenagel condensation pathway, which has the advantage of effectively producing the described thiophene derivatives (TD). Then, further TD reacts with p-toluene sulfonamide (Tosyl-Cl) at 0 °C within 10–12 h to provide the final product TPS. The present investigation provides an inexpensive and eco-friendly method of TPS derivatives. A perusal of the tables indicates that TPS derivatives exhibited promising activity against S. typhimurium as compared to E. coli and S. aureus. The compounds having good activity contained electron-withdrawing as well as electron-donating substituent groups on the benzaldehyde benzene ring of the amino part of the amide.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>\\nGreen sustainable development of multi component heterocyclic aryl sulfonamide reaction</p></div></div></figure></div></div>\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":\"33 3\",\"pages\":\"331 - 344\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13233-024-00335-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00335-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Synthesis of sustainable heterocyclic aryl sulfonamide derivatives: computational studies, molecular docking, and antibacterial assessment
The treatment of infectious diseases is impacted by the emergence of multidrug-resistant microbiological infections. Due to the long-term usage of antibacterial clinical drugs, microbes develop resistance to clinical drugs. To take advantage of the potential of these families of chemicals, several derivatives of thiophene containing p-toluene sulfonamide (TPS) were prepared using an eco-friendly method with high yields. These synthetic derivatives had a wide range of structural diversity to demonstrate a structure–activity link. In multi-component reaction (MCR), the versatile reactants (1 mmol) react for up to 6–8 h at pH 7.2 ± 0.2 and temperature 70 ± 1 °C. The reaction involved the reusable organic catalyst l-Proline (1 mol%), and the mechanisms through a Knoevenagel condensation pathway, which has the advantage of effectively producing the described thiophene derivatives (TD). Then, further TD reacts with p-toluene sulfonamide (Tosyl-Cl) at 0 °C within 10–12 h to provide the final product TPS. The present investigation provides an inexpensive and eco-friendly method of TPS derivatives. A perusal of the tables indicates that TPS derivatives exhibited promising activity against S. typhimurium as compared to E. coli and S. aureus. The compounds having good activity contained electron-withdrawing as well as electron-donating substituent groups on the benzaldehyde benzene ring of the amino part of the amide.
Graphical abstract
Green sustainable development of multi component heterocyclic aryl sulfonamide reaction
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.