cnn正则化器三维电阻率反演的平滑目标函数

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Peng Jiang;Shengjie Qiao;Yonghao Pang;Yongheng Zhang;Zhengyu Liu
{"title":"cnn正则化器三维电阻率反演的平滑目标函数","authors":"Peng Jiang;Shengjie Qiao;Yonghao Pang;Yongheng Zhang;Zhengyu Liu","doi":"10.1109/LSENS.2025.3544577","DOIUrl":null,"url":null,"abstract":"In tunnel geological forecasting, the electrical resistivity inversion method is extensively employed due to its high sensitivity to water-bearing bodies. Traditional inversion methods, such as least squares, simplify nonlinear problems into linear ones. However, they often converge to local minima, making it challenging to identify the global optimal solution, and their inversion results are highly dependent on the choice of the initial model. To address these challenges, we propose integrating convolutional neural networks (CNNs) into the conventional iterative inversion framework. Instead of directly optimizing the initial resistivity model, our approach focuses on updating the network parameters, with the resistivity model subsequently generated by the CNN. This enables the CNN structure to regularize the resistivity model, resulting in a smoother objective function. Consequently, our method exhibits greater robustness to variations in the initial model, leading to improved inversion results. Our numerical simulations and practical applications in engineering projects demonstrate that, compared to traditional inversion methods, the proposed approach is less sensitive to the initial model and achieves superior inversion outcomes, thereby validating our hypothesis.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 4","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothing Objective Function for 3-D Electrical Resistivity Inversion by CNNs Regularizer\",\"authors\":\"Peng Jiang;Shengjie Qiao;Yonghao Pang;Yongheng Zhang;Zhengyu Liu\",\"doi\":\"10.1109/LSENS.2025.3544577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In tunnel geological forecasting, the electrical resistivity inversion method is extensively employed due to its high sensitivity to water-bearing bodies. Traditional inversion methods, such as least squares, simplify nonlinear problems into linear ones. However, they often converge to local minima, making it challenging to identify the global optimal solution, and their inversion results are highly dependent on the choice of the initial model. To address these challenges, we propose integrating convolutional neural networks (CNNs) into the conventional iterative inversion framework. Instead of directly optimizing the initial resistivity model, our approach focuses on updating the network parameters, with the resistivity model subsequently generated by the CNN. This enables the CNN structure to regularize the resistivity model, resulting in a smoother objective function. Consequently, our method exhibits greater robustness to variations in the initial model, leading to improved inversion results. Our numerical simulations and practical applications in engineering projects demonstrate that, compared to traditional inversion methods, the proposed approach is less sensitive to the initial model and achieves superior inversion outcomes, thereby validating our hypothesis.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 4\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10900478/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10900478/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在隧道地质预测中,电阻率反演方法因其对含水体的敏感性高而被广泛应用。传统的反演方法,如最小二乘法,将非线性问题简化为线性问题。然而,它们往往收敛于局部极小值,这给全局最优解的识别带来了挑战,并且它们的反演结果高度依赖于初始模型的选择。为了解决这些挑战,我们提出将卷积神经网络(cnn)集成到传统的迭代反演框架中。我们的方法不是直接优化初始电阻率模型,而是着重于更新网络参数,随后由CNN生成电阻率模型。这使得CNN结构可以正则化电阻率模型,从而得到更平滑的目标函数。因此,我们的方法对初始模型的变化表现出更强的鲁棒性,从而改善了反演结果。数值模拟和工程实际应用表明,与传统的反演方法相比,该方法对初始模型的敏感性较低,反演效果较好,验证了我们的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothing Objective Function for 3-D Electrical Resistivity Inversion by CNNs Regularizer
In tunnel geological forecasting, the electrical resistivity inversion method is extensively employed due to its high sensitivity to water-bearing bodies. Traditional inversion methods, such as least squares, simplify nonlinear problems into linear ones. However, they often converge to local minima, making it challenging to identify the global optimal solution, and their inversion results are highly dependent on the choice of the initial model. To address these challenges, we propose integrating convolutional neural networks (CNNs) into the conventional iterative inversion framework. Instead of directly optimizing the initial resistivity model, our approach focuses on updating the network parameters, with the resistivity model subsequently generated by the CNN. This enables the CNN structure to regularize the resistivity model, resulting in a smoother objective function. Consequently, our method exhibits greater robustness to variations in the initial model, leading to improved inversion results. Our numerical simulations and practical applications in engineering projects demonstrate that, compared to traditional inversion methods, the proposed approach is less sensitive to the initial model and achieves superior inversion outcomes, thereby validating our hypothesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信