M2S2:一种用于野外动物远程运动捕捉的多模态传感器系统

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Azraa Vally;Gerald Maswoswere;Nicholas Bowden;Stephen Paine;Paul Amayo;Andrew Markham;Amir Patel
{"title":"M2S2:一种用于野外动物远程运动捕捉的多模态传感器系统","authors":"Azraa Vally;Gerald Maswoswere;Nicholas Bowden;Stephen Paine;Paul Amayo;Andrew Markham;Amir Patel","doi":"10.1109/LSENS.2025.3542233","DOIUrl":null,"url":null,"abstract":"Capturing animal locomotion in the wild is far more challenging than in controlled laboratory settings. Wildlife subjects move unpredictably, and issues, such as scaling, occlusion, lighting changes, and the lack of ground truth data, make motion capture difficult. Unlike human biomechanics, where machine learning thrives with annotated datasets, such resources are scarce for wildlife. Multimodal sensing offers a solution by combining the strengths of various sensors, such as Light Detection and Ranging {LiDAR) and thermal cameras, to compensate for individual sensor limitations. In addition, some sensors, like LiDAR, can provide training data for monocular pose estimation models. We introduce a multimodal sensor system (M2S2) for capturing animal motion in the wild. M2S2 integrates RGB, depth, thermal, event, LiDAR, and acoustic sensors to overcome challenges like synchronization and calibration. We showcase its application with data from cheetahs, offering a new resource for advancing sensor fusion algorithms in wildlife motion capture.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 4","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2S2: A Multimodal Sensor System for Remote Animal Motion Capture in the Wild\",\"authors\":\"Azraa Vally;Gerald Maswoswere;Nicholas Bowden;Stephen Paine;Paul Amayo;Andrew Markham;Amir Patel\",\"doi\":\"10.1109/LSENS.2025.3542233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capturing animal locomotion in the wild is far more challenging than in controlled laboratory settings. Wildlife subjects move unpredictably, and issues, such as scaling, occlusion, lighting changes, and the lack of ground truth data, make motion capture difficult. Unlike human biomechanics, where machine learning thrives with annotated datasets, such resources are scarce for wildlife. Multimodal sensing offers a solution by combining the strengths of various sensors, such as Light Detection and Ranging {LiDAR) and thermal cameras, to compensate for individual sensor limitations. In addition, some sensors, like LiDAR, can provide training data for monocular pose estimation models. We introduce a multimodal sensor system (M2S2) for capturing animal motion in the wild. M2S2 integrates RGB, depth, thermal, event, LiDAR, and acoustic sensors to overcome challenges like synchronization and calibration. We showcase its application with data from cheetahs, offering a new resource for advancing sensor fusion algorithms in wildlife motion capture.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 4\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10887236/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10887236/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在野外捕捉动物的运动远比在受控的实验室环境中更具挑战性。野生动物的移动是不可预测的,并且诸如缩放、遮挡、光照变化和缺乏地面真实数据等问题使得动作捕捉变得困难。与人类生物力学不同,在人类生物力学中,机器学习与带注释的数据集一起蓬勃发展,而这些资源对于野生动物来说是稀缺的。多模态传感提供了一种解决方案,通过结合各种传感器的优势,如光探测和测距{LiDAR)和热摄像机,以弥补单个传感器的局限性。此外,一些传感器,如激光雷达,可以为单目姿态估计模型提供训练数据。我们介绍了一种多模态传感器系统(M2S2),用于捕捉野生动物的运动。M2S2集成了RGB、深度、热、事件、激光雷达和声学传感器,以克服同步和校准等挑战。我们以猎豹的数据为例,展示了它的应用,为推进野生动物运动捕捉中的传感器融合算法提供了新的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M2S2: A Multimodal Sensor System for Remote Animal Motion Capture in the Wild
Capturing animal locomotion in the wild is far more challenging than in controlled laboratory settings. Wildlife subjects move unpredictably, and issues, such as scaling, occlusion, lighting changes, and the lack of ground truth data, make motion capture difficult. Unlike human biomechanics, where machine learning thrives with annotated datasets, such resources are scarce for wildlife. Multimodal sensing offers a solution by combining the strengths of various sensors, such as Light Detection and Ranging {LiDAR) and thermal cameras, to compensate for individual sensor limitations. In addition, some sensors, like LiDAR, can provide training data for monocular pose estimation models. We introduce a multimodal sensor system (M2S2) for capturing animal motion in the wild. M2S2 integrates RGB, depth, thermal, event, LiDAR, and acoustic sensors to overcome challenges like synchronization and calibration. We showcase its application with data from cheetahs, offering a new resource for advancing sensor fusion algorithms in wildlife motion capture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信