低成本frp约束钢筋混凝土梁破坏荷载的数据驱动预测

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Shabbir Ali Talpur , Phromphat Thansirichaisree , Weerachai Anotaipaiboon , Hisham Mohamad , Mingliang Zhou , Ali Ejaz , Qudeer Hussain , Panumas Saingam , Preeda Chaimahawan
{"title":"低成本frp约束钢筋混凝土梁破坏荷载的数据驱动预测","authors":"Shabbir Ali Talpur ,&nbsp;Phromphat Thansirichaisree ,&nbsp;Weerachai Anotaipaiboon ,&nbsp;Hisham Mohamad ,&nbsp;Mingliang Zhou ,&nbsp;Ali Ejaz ,&nbsp;Qudeer Hussain ,&nbsp;Panumas Saingam ,&nbsp;Preeda Chaimahawan","doi":"10.1016/j.jcomc.2025.100579","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the application of machine learning (ML) models to predict the ultimate failure load of reinforced concrete (RC) beams confined with low-cost fiber-reinforced polymers (FRP), relatively underexplored area. A dataset of 100 samples, including beams designed to fail in flexure and shear, was compiled from literature and experimental testing. Four ML models—XGBoost, Random Forest (RF), Neural Network (NN), and Decision Tree (DT)—were evaluated using k-fold cross-validation with performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R². XGBoost outperformed the other models, achieving the highest R² of 0.96 and the lowest RMSE of 12.81, while SHAP analysis identified beam height, bottom rebar strength, and beam width as key predictors. These results highlight the effectiveness of ensemble methods for predicting failure loads in RC beams and provide insights into the most influential features affecting structural performance.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"17 ","pages":"Article 100579"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven prediction of failure loads in low-cost FRP-confined reinforced concrete beams\",\"authors\":\"Shabbir Ali Talpur ,&nbsp;Phromphat Thansirichaisree ,&nbsp;Weerachai Anotaipaiboon ,&nbsp;Hisham Mohamad ,&nbsp;Mingliang Zhou ,&nbsp;Ali Ejaz ,&nbsp;Qudeer Hussain ,&nbsp;Panumas Saingam ,&nbsp;Preeda Chaimahawan\",\"doi\":\"10.1016/j.jcomc.2025.100579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the application of machine learning (ML) models to predict the ultimate failure load of reinforced concrete (RC) beams confined with low-cost fiber-reinforced polymers (FRP), relatively underexplored area. A dataset of 100 samples, including beams designed to fail in flexure and shear, was compiled from literature and experimental testing. Four ML models—XGBoost, Random Forest (RF), Neural Network (NN), and Decision Tree (DT)—were evaluated using k-fold cross-validation with performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R². XGBoost outperformed the other models, achieving the highest R² of 0.96 and the lowest RMSE of 12.81, while SHAP analysis identified beam height, bottom rebar strength, and beam width as key predictors. These results highlight the effectiveness of ensemble methods for predicting failure loads in RC beams and provide insights into the most influential features affecting structural performance.</div></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"17 \",\"pages\":\"Article 100579\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682025000234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了机器学习(ML)模型的应用,以预测低成本纤维增强聚合物(FRP)约束的钢筋混凝土(RC)梁的最终破坏荷载,这是一个相对欠发达的领域。从文献和实验测试中编译了100个样本的数据集,包括设计在弯曲和剪切中失效的梁。四种ML模型——xgboost、随机森林(RF)、神经网络(NN)和决策树(DT)——使用k-fold交叉验证进行评估,性能指标包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和R²。XGBoost模型优于其他模型,最高R²为0.96,最低RMSE为12.81,而SHAP分析确定梁高、底部钢筋强度和梁宽度是关键预测因子。这些结果强调了集成方法在预测RC梁破坏荷载方面的有效性,并提供了对影响结构性能的最重要特征的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven prediction of failure loads in low-cost FRP-confined reinforced concrete beams
This study investigates the application of machine learning (ML) models to predict the ultimate failure load of reinforced concrete (RC) beams confined with low-cost fiber-reinforced polymers (FRP), relatively underexplored area. A dataset of 100 samples, including beams designed to fail in flexure and shear, was compiled from literature and experimental testing. Four ML models—XGBoost, Random Forest (RF), Neural Network (NN), and Decision Tree (DT)—were evaluated using k-fold cross-validation with performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R². XGBoost outperformed the other models, achieving the highest R² of 0.96 and the lowest RMSE of 12.81, while SHAP analysis identified beam height, bottom rebar strength, and beam width as key predictors. These results highlight the effectiveness of ensemble methods for predicting failure loads in RC beams and provide insights into the most influential features affecting structural performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信