实线的谱

IF 0.7 2区 数学 Q2 MATHEMATICS
Jan-Paul Lerch
{"title":"实线的谱","authors":"Jan-Paul Lerch","doi":"10.1016/j.jpaa.2025.107928","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the study of persistence modules over the real line, we investigate the category of linear representations of a totally ordered set. We show that this category is locally coherent and we classify the indecomposable injective objects up to isomorphism. These classes form the spectrum, which we show to be homeomorphic to an ordered space. Moreover, as the spectral category turns out to be discrete, the spectrum parametrises all injective objects.</div><div>Finally, for the case of the real line we show that this topology refines the topology induced by the interleaving distance, which is known from persistence homology.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107928"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spectrum of the real line\",\"authors\":\"Jan-Paul Lerch\",\"doi\":\"10.1016/j.jpaa.2025.107928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the study of persistence modules over the real line, we investigate the category of linear representations of a totally ordered set. We show that this category is locally coherent and we classify the indecomposable injective objects up to isomorphism. These classes form the spectrum, which we show to be homeomorphic to an ordered space. Moreover, as the spectral category turns out to be discrete, the spectrum parametrises all injective objects.</div><div>Finally, for the case of the real line we show that this topology refines the topology induced by the interleaving distance, which is known from persistence homology.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 6\",\"pages\":\"Article 107928\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000672\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000672","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在实线上持久性模的研究的激励下,我们研究了全有序集合的线性表示的范畴。我们证明了这一范畴是局部相干的,并对不可分解的单射对象进行了同构分类。这些类构成了谱,我们证明了谱同胚于有序空间。此外,由于光谱范畴是离散的,光谱参数化了所有的内射物体。最后,对于实线的情况,我们证明了该拓扑细化了由交错距离引起的拓扑,这是由持久性同调可知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spectrum of the real line
Motivated by the study of persistence modules over the real line, we investigate the category of linear representations of a totally ordered set. We show that this category is locally coherent and we classify the indecomposable injective objects up to isomorphism. These classes form the spectrum, which we show to be homeomorphic to an ordered space. Moreover, as the spectral category turns out to be discrete, the spectrum parametrises all injective objects.
Finally, for the case of the real line we show that this topology refines the topology induced by the interleaving distance, which is known from persistence homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信