正则代数正特征的Bahturin-Regev猜想的否定答案

IF 0.7 2区 数学 Q2 MATHEMATICS
Lucio Centrone , Plamen Koshlukov , Kauê Pereira
{"title":"正则代数正特征的Bahturin-Regev猜想的否定答案","authors":"Lucio Centrone ,&nbsp;Plamen Koshlukov ,&nbsp;Kauê Pereira","doi":"10.1016/j.jpaa.2025.107933","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊕</mo><mo>⋯</mo><mo>⊕</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> be a decomposition of the algebra <em>A</em> as a direct sum of vector subspaces. If for every choice of the indices <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≤</mo><mi>r</mi></math></span> there exist <span><math><msub><mrow><mi>a</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></math></span> such that the product <span><math><msub><mrow><mi>a</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>⋯</mo><msub><mrow><mi>a</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>≠</mo><mn>0</mn></math></span>, and for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>r</mi></math></span> there is a constant <span><math><mi>β</mi><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo><mo>≠</mo><mn>0</mn></math></span> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mi>β</mi><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, the above decomposition is <em>regular</em>. Bahturin and Regev raised the following conjecture: suppose that the regular decomposition comes from a group grading on <em>A</em>, and form the <span><math><mi>r</mi><mo>×</mo><mi>r</mi></math></span> matrix whose <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>th entry equals <span><math><mi>β</mi><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>. Then this matrix is invertible if and only if the decomposition is minimal (that is one cannot get a regular decomposition of <em>A</em> by coarsening the decomposition). Aljadeff and David proved that the conjecture is true in the case the base field is of characteristic 0. We prove that the conjecture does not hold for algebras over fields of positive characteristic, by constructing algebras with minimal regular decompositions such that the associated matrix is singular.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107933"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A negative answer to a Bahturin-Regev conjecture about regular algebras in positive characteristic\",\"authors\":\"Lucio Centrone ,&nbsp;Plamen Koshlukov ,&nbsp;Kauê Pereira\",\"doi\":\"10.1016/j.jpaa.2025.107933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊕</mo><mo>⋯</mo><mo>⊕</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> be a decomposition of the algebra <em>A</em> as a direct sum of vector subspaces. If for every choice of the indices <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≤</mo><mi>r</mi></math></span> there exist <span><math><msub><mrow><mi>a</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></math></span> such that the product <span><math><msub><mrow><mi>a</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>⋯</mo><msub><mrow><mi>a</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>≠</mo><mn>0</mn></math></span>, and for every <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>r</mi></math></span> there is a constant <span><math><mi>β</mi><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo><mo>≠</mo><mn>0</mn></math></span> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><mi>β</mi><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, the above decomposition is <em>regular</em>. Bahturin and Regev raised the following conjecture: suppose that the regular decomposition comes from a group grading on <em>A</em>, and form the <span><math><mi>r</mi><mo>×</mo><mi>r</mi></math></span> matrix whose <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>th entry equals <span><math><mi>β</mi><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></math></span>. Then this matrix is invertible if and only if the decomposition is minimal (that is one cannot get a regular decomposition of <em>A</em> by coarsening the decomposition). Aljadeff and David proved that the conjecture is true in the case the base field is of characteristic 0. We prove that the conjecture does not hold for algebras over fields of positive characteristic, by constructing algebras with minimal regular decompositions such that the associated matrix is singular.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 6\",\"pages\":\"Article 107933\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000726\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000726","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设A=A1⊕⋯⊕Ar是代数A的分解为向量子空间的直接和。若对于指标1≤ij≤r的每一个选择,存在aij∈aij使得乘积ai1, ain≠0,且对于每一个1≤i,j≤r,存在一个常数β(i,j)≠0,且aiaj=β(i,j)ajai对于ai∈ai, aj∈aj,则上述分解是正则的。Bahturin和Regev提出了以下猜想:假设正则分解来自a上的一个分级群,并形成(i,j)个条目等于β(i,j)的r×r矩阵。那么这个矩阵是可逆的当且仅当分解是最小的(即不能通过粗化分解得到a的正则分解)Aljadeff和David证明了该猜想在基场特征为0的情况下成立。通过构造具有最小正则分解的代数,使其关联矩阵为奇异,证明了该猜想对正特征域上的代数不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A negative answer to a Bahturin-Regev conjecture about regular algebras in positive characteristic
Let A=A1Ar be a decomposition of the algebra A as a direct sum of vector subspaces. If for every choice of the indices 1ijr there exist aijAij such that the product ai1ain0, and for every 1i,jr there is a constant β(i,j)0 with aiaj=β(i,j)ajai for aiAi, ajAj, the above decomposition is regular. Bahturin and Regev raised the following conjecture: suppose that the regular decomposition comes from a group grading on A, and form the r×r matrix whose (i,j)th entry equals β(i,j). Then this matrix is invertible if and only if the decomposition is minimal (that is one cannot get a regular decomposition of A by coarsening the decomposition). Aljadeff and David proved that the conjecture is true in the case the base field is of characteristic 0. We prove that the conjecture does not hold for algebras over fields of positive characteristic, by constructing algebras with minimal regular decompositions such that the associated matrix is singular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信