霍尔电流和旋转对焦耳加热和粘性耗散纳米流体MHD流动的影响

Q1 Chemical Engineering
Guthula Kanaka Lakshmi, Paramsetti Sri Ramachandra Murty
{"title":"霍尔电流和旋转对焦耳加热和粘性耗散纳米流体MHD流动的影响","authors":"Guthula Kanaka Lakshmi,&nbsp;Paramsetti Sri Ramachandra Murty","doi":"10.1016/j.ijft.2025.101153","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of Hall current, rotational effects, and thermal diffusion on the transient magnetohydrodynamic (MHD) free convection flow of water-based Cu and TiO₂ nanofluids, incorporating the effects of Joule heating and viscous dissipation. The fluid motion occurs along a permeable vertical plate under an applied magnetic field in a rotating frame of reference. The governing equations, formulated as partial differential equations (PDEs), are transformed into a system of ordinary differential equations (ODEs) using non-dimensionalization techniques and are solved analytically via the perturbation method. The study presents an in-depth analysis of velocity and temperature distributions, as well as the effects of key parameters such as the hall current, rotational force, thermal radiation and suction parameter. Results indicate that an increase in the Hall parameter enhances the velocity of the primary flow but decreases secondary velocity. The velocity profile also increases with higher thermal Grashof number, while a rise in the magnetic field strength retards fluid motion due to Lorentz force effects. The temperature profile decreases with increasing Prandtl number and heat source intensity. These findings provide valuable insights into the behavior of nanofluid flow in MHD environments and have potential applications in energy systems, cooling technologies, and electronic thermal management.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101153"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of hall current and rotational on MHD flow of nanofluid with joule heating and viscous dissipation\",\"authors\":\"Guthula Kanaka Lakshmi,&nbsp;Paramsetti Sri Ramachandra Murty\",\"doi\":\"10.1016/j.ijft.2025.101153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the influence of Hall current, rotational effects, and thermal diffusion on the transient magnetohydrodynamic (MHD) free convection flow of water-based Cu and TiO₂ nanofluids, incorporating the effects of Joule heating and viscous dissipation. The fluid motion occurs along a permeable vertical plate under an applied magnetic field in a rotating frame of reference. The governing equations, formulated as partial differential equations (PDEs), are transformed into a system of ordinary differential equations (ODEs) using non-dimensionalization techniques and are solved analytically via the perturbation method. The study presents an in-depth analysis of velocity and temperature distributions, as well as the effects of key parameters such as the hall current, rotational force, thermal radiation and suction parameter. Results indicate that an increase in the Hall parameter enhances the velocity of the primary flow but decreases secondary velocity. The velocity profile also increases with higher thermal Grashof number, while a rise in the magnetic field strength retards fluid motion due to Lorentz force effects. The temperature profile decreases with increasing Prandtl number and heat source intensity. These findings provide valuable insights into the behavior of nanofluid flow in MHD environments and have potential applications in energy systems, cooling technologies, and electronic thermal management.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"27 \",\"pages\":\"Article 101153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725001004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725001004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了霍尔电流、旋转效应和热扩散对水基Cu和TiO 2纳米流体瞬态磁流体动力学(MHD)自由对流流动的影响,并考虑了焦耳加热和粘性耗散的影响。在旋转参照系中的外加磁场作用下,流体沿着可渗透的垂直板运动。利用无量纲化技术将控制方程(偏微分方程)转化为常微分方程(ode)系统,并通过摄动法解析求解。该研究深入分析了速度和温度分布,以及霍尔电流、旋转力、热辐射和吸力参数等关键参数的影响。结果表明,霍尔参数的增大增大了一次流速度,降低了二次流速度。随着热格拉什夫数的增加,速度分布也随之增加,而磁场强度的增加由于洛伦兹力的作用而延缓了流体的运动。温度分布随普朗特数和热源强度的增加而减小。这些发现为纳米流体在MHD环境中的流动行为提供了有价值的见解,并在能源系统、冷却技术和电子热管理方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of hall current and rotational on MHD flow of nanofluid with joule heating and viscous dissipation
This study investigates the influence of Hall current, rotational effects, and thermal diffusion on the transient magnetohydrodynamic (MHD) free convection flow of water-based Cu and TiO₂ nanofluids, incorporating the effects of Joule heating and viscous dissipation. The fluid motion occurs along a permeable vertical plate under an applied magnetic field in a rotating frame of reference. The governing equations, formulated as partial differential equations (PDEs), are transformed into a system of ordinary differential equations (ODEs) using non-dimensionalization techniques and are solved analytically via the perturbation method. The study presents an in-depth analysis of velocity and temperature distributions, as well as the effects of key parameters such as the hall current, rotational force, thermal radiation and suction parameter. Results indicate that an increase in the Hall parameter enhances the velocity of the primary flow but decreases secondary velocity. The velocity profile also increases with higher thermal Grashof number, while a rise in the magnetic field strength retards fluid motion due to Lorentz force effects. The temperature profile decreases with increasing Prandtl number and heat source intensity. These findings provide valuable insights into the behavior of nanofluid flow in MHD environments and have potential applications in energy systems, cooling technologies, and electronic thermal management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信