Wencai Liu, Zhanhao Liang, Shaojie Jing, Junjie Zhong, Ning Liu, Bin Liao, Zichen Song, Yihui Huang, Bo Yan, Liyong Gan, Xi Xie, Yichao Zou, Xuchun Gui, Hong Bin Yang, Dingshan Yu, Zhiping Zeng, Guowei Yang
{"title":"超耐用极低温锌-空气电池的远距离电子耦合非对称三原子位","authors":"Wencai Liu, Zhanhao Liang, Shaojie Jing, Junjie Zhong, Ning Liu, Bin Liao, Zichen Song, Yihui Huang, Bo Yan, Liyong Gan, Xi Xie, Yichao Zou, Xuchun Gui, Hong Bin Yang, Dingshan Yu, Zhiping Zeng, Guowei Yang","doi":"10.1002/anie.202503493","DOIUrl":null,"url":null,"abstract":"<p>Reversible zinc–air battery (ZAB) is a promising alternative for sustainable fuel cells, but the performance is impeded by the sluggish oxygen redox kinetics owing to the suboptimal adsorption and desorption of oxygen intermediates. Here, hetero-trimetallic atom catalysts (TACs) uniquely incorporate an electron regulatory role beyond primary and secondary active sites found in dual-atom catalysts. In situ X-ray absorption fine structure (XAFS) and Raman spectroscopy elucidate Fe in FeCoNi SA catalyst (FCN-TM/NC) functions as the main active site, leveraging long-range electron coupling from neighboring Co and Ni to boost catalytic efficiency. The ZAB equipped with FCN-TM/NC exhibits ultra-stable rechargeability (over 5500 h at 1 mA cm<sup>−2</sup> under −60 °C). The in-depth theoretical and experimental investigations attribute such superior catalytic activity to the asymmetric FeN<sub>4</sub> configuration, long-distance electron coupling, modulated local microenvironment, optimized d orbital energy levels, and lower energy barrier for bifunctional oxygen electrocatalysis. This work provides a comprehensive mechanistic understanding of the structure-reactivity relationship in TACs for energy conversion.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 21","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetrical Triatomic Sites with Long-Range Electron Coupling for Ultra-Durable and Extreme-Low-Temperature Zinc–Air Batteries\",\"authors\":\"Wencai Liu, Zhanhao Liang, Shaojie Jing, Junjie Zhong, Ning Liu, Bin Liao, Zichen Song, Yihui Huang, Bo Yan, Liyong Gan, Xi Xie, Yichao Zou, Xuchun Gui, Hong Bin Yang, Dingshan Yu, Zhiping Zeng, Guowei Yang\",\"doi\":\"10.1002/anie.202503493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reversible zinc–air battery (ZAB) is a promising alternative for sustainable fuel cells, but the performance is impeded by the sluggish oxygen redox kinetics owing to the suboptimal adsorption and desorption of oxygen intermediates. Here, hetero-trimetallic atom catalysts (TACs) uniquely incorporate an electron regulatory role beyond primary and secondary active sites found in dual-atom catalysts. In situ X-ray absorption fine structure (XAFS) and Raman spectroscopy elucidate Fe in FeCoNi SA catalyst (FCN-TM/NC) functions as the main active site, leveraging long-range electron coupling from neighboring Co and Ni to boost catalytic efficiency. The ZAB equipped with FCN-TM/NC exhibits ultra-stable rechargeability (over 5500 h at 1 mA cm<sup>−2</sup> under −60 °C). The in-depth theoretical and experimental investigations attribute such superior catalytic activity to the asymmetric FeN<sub>4</sub> configuration, long-distance electron coupling, modulated local microenvironment, optimized d orbital energy levels, and lower energy barrier for bifunctional oxygen electrocatalysis. This work provides a comprehensive mechanistic understanding of the structure-reactivity relationship in TACs for energy conversion.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 21\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202503493\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202503493","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
可逆锌空气电池(ZAB)是一种很有前途的可持续燃料电池替代品,但由于氧中间体的吸附和解吸不理想,导致氧氧化还原动力学缓慢,影响了电池的性能。在这里,杂环tac独特地结合了电子调节作用,而不是双原子催化剂中发现的一级和二级活性位点。原位XAFS和拉曼光谱分析表明,FCN-TM/NC中的Fe作为主要活性位点,利用邻近Co和Ni的远程电子耦合来提高催化效率。配备FCN-TM/NC的ZAB具有超稳定的可充电性(在- 60°C下,在1 mA cm - 2下超过5500小时)。深入的理论和实验研究将这种优异的催化活性归因于双功能氧电催化的不对称FeN4构型、远距离电子耦合、调制的局部微环境、优化的d轨道能级和较低的能垒。这项工作为tac中能量转换的结构-反应性关系提供了一个全面的机制理解。
Asymmetrical Triatomic Sites with Long-Range Electron Coupling for Ultra-Durable and Extreme-Low-Temperature Zinc–Air Batteries
Reversible zinc–air battery (ZAB) is a promising alternative for sustainable fuel cells, but the performance is impeded by the sluggish oxygen redox kinetics owing to the suboptimal adsorption and desorption of oxygen intermediates. Here, hetero-trimetallic atom catalysts (TACs) uniquely incorporate an electron regulatory role beyond primary and secondary active sites found in dual-atom catalysts. In situ X-ray absorption fine structure (XAFS) and Raman spectroscopy elucidate Fe in FeCoNi SA catalyst (FCN-TM/NC) functions as the main active site, leveraging long-range electron coupling from neighboring Co and Ni to boost catalytic efficiency. The ZAB equipped with FCN-TM/NC exhibits ultra-stable rechargeability (over 5500 h at 1 mA cm−2 under −60 °C). The in-depth theoretical and experimental investigations attribute such superior catalytic activity to the asymmetric FeN4 configuration, long-distance electron coupling, modulated local microenvironment, optimized d orbital energy levels, and lower energy barrier for bifunctional oxygen electrocatalysis. This work provides a comprehensive mechanistic understanding of the structure-reactivity relationship in TACs for energy conversion.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.