无机钙钛矿/有机串联太阳能电池,通过底部接触调制具有25.1%的认证效率

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
Yu Han, Jiehao Fu, Zhiwei Ren, Jiangsheng Yu, Qiong Liang, Zhihang Xu, Xiyun Xie, Dongyang Li, Ruijie Ma, Menghua Cao, Yonggui Sun, Chen Yang, Jiaqi He, Xiaoming Chang, Kuan Liu, Patrick W. K. Fong, Jiaming Huang, Heng Liu, Zhike Liu, Dongfang Xu, Lei Cheng, Jiyao Zhang, Guang Yang, Xinhui Lu, Ye Zhu, Qidong Tai, Qianqian Lin, Hanlin Hu, Yang Yang, Gang Li
{"title":"无机钙钛矿/有机串联太阳能电池,通过底部接触调制具有25.1%的认证效率","authors":"Yu Han, Jiehao Fu, Zhiwei Ren, Jiangsheng Yu, Qiong Liang, Zhihang Xu, Xiyun Xie, Dongyang Li, Ruijie Ma, Menghua Cao, Yonggui Sun, Chen Yang, Jiaqi He, Xiaoming Chang, Kuan Liu, Patrick W. K. Fong, Jiaming Huang, Heng Liu, Zhike Liu, Dongfang Xu, Lei Cheng, Jiyao Zhang, Guang Yang, Xinhui Lu, Ye Zhu, Qidong Tai, Qianqian Lin, Hanlin Hu, Yang Yang, Gang Li","doi":"10.1038/s41560-025-01742-8","DOIUrl":null,"url":null,"abstract":"<p>Wide-bandgap perovskites in monolithic perovskite/organic tandem solar cells face challenges such as unregulated crystallization, severe defect traps, poor energetic alignment and undesirable phase transitions, primarily due to unfavourable bottom interfacial contact. These issues lead to energy loss and device degradation. In this Article, we synthesize acidic magnesium-doped tin oxide quantum dots to modulate the bottom interface contact in wide-bandgap CsPbI<sub>2</sub>Br perovskite solar cells. This design balances physical, chemical, structural and energetic properties, passivating defects, optimizing energy band alignment, enhancing perovskite film growth and mitigating instability. We also elucidate the instability mechanism caused by alkaline-based tin oxide bottom contact, emphasizing the impact of the tin oxide solution’s acid/base properties on the stability and performance of the device. Consequently, the wide-bandgap CsPbI<sub>2</sub>Br solar cell achieves a power conversion efficiency of 19.2% with a 1.44 V open-circuit voltage. The perovskite/organic tandem solar cell demonstrates an efficiency of 25.9% (certified at 25.1%), with improved stability under various conditions.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"54 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inorganic perovskite/organic tandem solar cells with 25.1% certified efficiency via bottom contact modulation\",\"authors\":\"Yu Han, Jiehao Fu, Zhiwei Ren, Jiangsheng Yu, Qiong Liang, Zhihang Xu, Xiyun Xie, Dongyang Li, Ruijie Ma, Menghua Cao, Yonggui Sun, Chen Yang, Jiaqi He, Xiaoming Chang, Kuan Liu, Patrick W. K. Fong, Jiaming Huang, Heng Liu, Zhike Liu, Dongfang Xu, Lei Cheng, Jiyao Zhang, Guang Yang, Xinhui Lu, Ye Zhu, Qidong Tai, Qianqian Lin, Hanlin Hu, Yang Yang, Gang Li\",\"doi\":\"10.1038/s41560-025-01742-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wide-bandgap perovskites in monolithic perovskite/organic tandem solar cells face challenges such as unregulated crystallization, severe defect traps, poor energetic alignment and undesirable phase transitions, primarily due to unfavourable bottom interfacial contact. These issues lead to energy loss and device degradation. In this Article, we synthesize acidic magnesium-doped tin oxide quantum dots to modulate the bottom interface contact in wide-bandgap CsPbI<sub>2</sub>Br perovskite solar cells. This design balances physical, chemical, structural and energetic properties, passivating defects, optimizing energy band alignment, enhancing perovskite film growth and mitigating instability. We also elucidate the instability mechanism caused by alkaline-based tin oxide bottom contact, emphasizing the impact of the tin oxide solution’s acid/base properties on the stability and performance of the device. Consequently, the wide-bandgap CsPbI<sub>2</sub>Br solar cell achieves a power conversion efficiency of 19.2% with a 1.44 V open-circuit voltage. The perovskite/organic tandem solar cell demonstrates an efficiency of 25.9% (certified at 25.1%), with improved stability under various conditions.</p>\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41560-025-01742-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01742-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

单片钙钛矿/有机串联太阳能电池中的宽带隙钙钛矿面临着诸如结晶不规范、严重缺陷陷阱、能量排列不良和不良相变等挑战,主要是由于不利的底部界面接触。这些问题会导致能量损失和设备退化。在本文中,我们合成了酸性镁掺杂锡氧化物量子点来调制宽带隙CsPbI2Br钙钛矿太阳能电池的底部界面接触。这种设计平衡了物理、化学、结构和能量特性,钝化了缺陷,优化了能带排列,增强了钙钛矿薄膜的生长,减轻了不稳定性。我们还阐明了碱基氧化锡底部接触引起的不稳定机制,强调了氧化锡溶液的酸碱性质对器件稳定性和性能的影响。因此,宽禁带CsPbI2Br太阳能电池在1.44 V开路电压下的功率转换效率为19.2%。钙钛矿/有机串联太阳能电池的效率为25.9%(经认证为25.1%),在各种条件下都具有更好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inorganic perovskite/organic tandem solar cells with 25.1% certified efficiency via bottom contact modulation

Inorganic perovskite/organic tandem solar cells with 25.1% certified efficiency via bottom contact modulation

Wide-bandgap perovskites in monolithic perovskite/organic tandem solar cells face challenges such as unregulated crystallization, severe defect traps, poor energetic alignment and undesirable phase transitions, primarily due to unfavourable bottom interfacial contact. These issues lead to energy loss and device degradation. In this Article, we synthesize acidic magnesium-doped tin oxide quantum dots to modulate the bottom interface contact in wide-bandgap CsPbI2Br perovskite solar cells. This design balances physical, chemical, structural and energetic properties, passivating defects, optimizing energy band alignment, enhancing perovskite film growth and mitigating instability. We also elucidate the instability mechanism caused by alkaline-based tin oxide bottom contact, emphasizing the impact of the tin oxide solution’s acid/base properties on the stability and performance of the device. Consequently, the wide-bandgap CsPbI2Br solar cell achieves a power conversion efficiency of 19.2% with a 1.44 V open-circuit voltage. The perovskite/organic tandem solar cell demonstrates an efficiency of 25.9% (certified at 25.1%), with improved stability under various conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信