晶体结构调制实现快速充电和稳定的层状氧化钠阴极

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-03-13 DOI:10.1039/D4NR05110F
Jingping Lin, Daoyuan Chen, Zhimin Lin, Zige Hong, Qiuyan Chen, Yating Wang, Yuxin Tang, Yanyan Zhang, Huibo Wang and Zhengshuai Bai
{"title":"晶体结构调制实现快速充电和稳定的层状氧化钠阴极","authors":"Jingping Lin, Daoyuan Chen, Zhimin Lin, Zige Hong, Qiuyan Chen, Yating Wang, Yuxin Tang, Yanyan Zhang, Huibo Wang and Zhengshuai Bai","doi":"10.1039/D4NR05110F","DOIUrl":null,"url":null,"abstract":"<p >Layered oxide cathodes show great promise for commercial applications due to their low cost, high specific capacity, and energy density. However, their rapid capacity decay and slow kinetics primarily caused by harmful phase transitions and a high energy barrier for Na<small><sup>+</sup></small> diffusion result in inferior battery performance. Herein, we modulate the crystal structure of layered oxide cathodes by replacing the Fe<small><sup>3+</sup></small> site with Al<small><sup>3+</sup></small>, which strengthens the transition metal layers and enlarges the Na translation layer owing to the smaller ion radius of Al<small><sup>3+</sup></small> and the stronger bonding energy of Al–O. This restrains the Jahn–Teller effect owing to transition metal dissolution and improves the electrochemical kinetics. Consequently, the modified cathodes exhibited an excellent high-rate performance of 111 mA h g<small><sup>−1</sup></small> at a high rate of 5.0C and an unexpectedly long cycling life with a 73.88% capacity retention rate after 500 cycles at 5.0C, whereas the bare cathode exhibited a rate performance of 97.3 mA h g<small><sup>−1</sup></small> with a low capacity retention rate of 48.42% after 500 cycles at 5.0C. This study provides valuable insights into tuning the crystal structure for designing fast charging and highly stable O3-type cathodes.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 16","pages":" 10095-10104"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structure modulation enabling fast charging and stable layered sodium oxide cathodes†\",\"authors\":\"Jingping Lin, Daoyuan Chen, Zhimin Lin, Zige Hong, Qiuyan Chen, Yating Wang, Yuxin Tang, Yanyan Zhang, Huibo Wang and Zhengshuai Bai\",\"doi\":\"10.1039/D4NR05110F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Layered oxide cathodes show great promise for commercial applications due to their low cost, high specific capacity, and energy density. However, their rapid capacity decay and slow kinetics primarily caused by harmful phase transitions and a high energy barrier for Na<small><sup>+</sup></small> diffusion result in inferior battery performance. Herein, we modulate the crystal structure of layered oxide cathodes by replacing the Fe<small><sup>3+</sup></small> site with Al<small><sup>3+</sup></small>, which strengthens the transition metal layers and enlarges the Na translation layer owing to the smaller ion radius of Al<small><sup>3+</sup></small> and the stronger bonding energy of Al–O. This restrains the Jahn–Teller effect owing to transition metal dissolution and improves the electrochemical kinetics. Consequently, the modified cathodes exhibited an excellent high-rate performance of 111 mA h g<small><sup>−1</sup></small> at a high rate of 5.0C and an unexpectedly long cycling life with a 73.88% capacity retention rate after 500 cycles at 5.0C, whereas the bare cathode exhibited a rate performance of 97.3 mA h g<small><sup>−1</sup></small> with a low capacity retention rate of 48.42% after 500 cycles at 5.0C. This study provides valuable insights into tuning the crystal structure for designing fast charging and highly stable O3-type cathodes.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 16\",\"pages\":\" 10095-10104\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05110f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr05110f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

层状氧化物阴极具有低成本、高比容量和能量密度等优点,具有广阔的商业应用前景。然而,有害的相变和Na+扩散的高能量势垒导致电池容量衰减快、动力学慢,导致电池性能下降。本文通过用Al3+取代Fe3+来调节层状氧化物阴极的晶体结构,由于Al3+的离子半径较小,Al−O的键能更强,从而增强了过渡金属层,扩大了Na平移层。这抑制了过渡金属溶解引起的扬-泰勒效应,改善了电化学动力学。结果表明,改性后的阴极在5.0℃的高倍率下具有111 mAh g-1的优异性能,在5.0℃下500次循环后的容量保持率达到73.88%,而裸阴极在5.0℃下500次循环后的容量保持率为97.3 mAh g-1,仅为48.42%。该研究为设计快速充电和高稳定的o3型阴极提供了有价值的晶体结构调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystal structure modulation enabling fast charging and stable layered sodium oxide cathodes†

Crystal structure modulation enabling fast charging and stable layered sodium oxide cathodes†

Layered oxide cathodes show great promise for commercial applications due to their low cost, high specific capacity, and energy density. However, their rapid capacity decay and slow kinetics primarily caused by harmful phase transitions and a high energy barrier for Na+ diffusion result in inferior battery performance. Herein, we modulate the crystal structure of layered oxide cathodes by replacing the Fe3+ site with Al3+, which strengthens the transition metal layers and enlarges the Na translation layer owing to the smaller ion radius of Al3+ and the stronger bonding energy of Al–O. This restrains the Jahn–Teller effect owing to transition metal dissolution and improves the electrochemical kinetics. Consequently, the modified cathodes exhibited an excellent high-rate performance of 111 mA h g−1 at a high rate of 5.0C and an unexpectedly long cycling life with a 73.88% capacity retention rate after 500 cycles at 5.0C, whereas the bare cathode exhibited a rate performance of 97.3 mA h g−1 with a low capacity retention rate of 48.42% after 500 cycles at 5.0C. This study provides valuable insights into tuning the crystal structure for designing fast charging and highly stable O3-type cathodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信