钉钉诱导微滴自输运

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-03-13 DOI:10.1021/acsnano.4c16960
Hyeongyun Cha, Moon-Kyung Kim, Ho Chan Chang, Lenan Zhang, Nenad Miljkovic
{"title":"钉钉诱导微滴自输运","authors":"Hyeongyun Cha, Moon-Kyung Kim, Ho Chan Chang, Lenan Zhang, Nenad Miljkovic","doi":"10.1021/acsnano.4c16960","DOIUrl":null,"url":null,"abstract":"Droplets are prone to adhere or “pin” on solid surfaces which contain unavoidable micro- and nanoscale surface defects formed through chemical and topographical heterogeneity. To initiate droplet motion, potential energy gradients, surface energy gradients, or external energy input are needed. Here, in contrast to established wisdom, we show that properly designed surface heterogeneity can promote microdroplet self-transport without any external force or anisotropy. In the presence of topological defects, microdroplets can take advantage of contact line pinning to generate contact line and corresponding contact angle asymmetry, leading to spontaneous motion over distances 10–20 times larger than the droplet radius. The outcomes of this work present an alternative pathway for taking advantage of intrinsic surface heterogeneity to achieve droplet mobility in a range of applications, where passive droplet motion is desired.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"22 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pinning-Induced Microdroplet Self-Transport\",\"authors\":\"Hyeongyun Cha, Moon-Kyung Kim, Ho Chan Chang, Lenan Zhang, Nenad Miljkovic\",\"doi\":\"10.1021/acsnano.4c16960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Droplets are prone to adhere or “pin” on solid surfaces which contain unavoidable micro- and nanoscale surface defects formed through chemical and topographical heterogeneity. To initiate droplet motion, potential energy gradients, surface energy gradients, or external energy input are needed. Here, in contrast to established wisdom, we show that properly designed surface heterogeneity can promote microdroplet self-transport without any external force or anisotropy. In the presence of topological defects, microdroplets can take advantage of contact line pinning to generate contact line and corresponding contact angle asymmetry, leading to spontaneous motion over distances 10–20 times larger than the droplet radius. The outcomes of this work present an alternative pathway for taking advantage of intrinsic surface heterogeneity to achieve droplet mobility in a range of applications, where passive droplet motion is desired.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c16960\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16960","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

液滴容易粘附或“钉”在固体表面上,而固体表面含有不可避免的微纳米级表面缺陷,这些缺陷是由化学和地形不均一性形成的。为了启动液滴运动,需要势能梯度、表面能梯度或外部能量输入。在这里,与现有的智慧相反,我们表明,适当设计的表面非均质性可以促进微液滴的自输运,而不需要任何外力或各向异性。在存在拓扑缺陷的情况下,微液滴可以利用接触线钉住产生接触线和相应的接触角不对称,导致在比液滴半径大10-20倍的距离上自发运动。这项工作的结果为利用固有的表面非均质性在一系列应用中实现液滴的移动性提供了另一种途径,在这些应用中需要被动的液滴运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pinning-Induced Microdroplet Self-Transport

Pinning-Induced Microdroplet Self-Transport
Droplets are prone to adhere or “pin” on solid surfaces which contain unavoidable micro- and nanoscale surface defects formed through chemical and topographical heterogeneity. To initiate droplet motion, potential energy gradients, surface energy gradients, or external energy input are needed. Here, in contrast to established wisdom, we show that properly designed surface heterogeneity can promote microdroplet self-transport without any external force or anisotropy. In the presence of topological defects, microdroplets can take advantage of contact line pinning to generate contact line and corresponding contact angle asymmetry, leading to spontaneous motion over distances 10–20 times larger than the droplet radius. The outcomes of this work present an alternative pathway for taking advantage of intrinsic surface heterogeneity to achieve droplet mobility in a range of applications, where passive droplet motion is desired.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信