移植到异体宿主体内的 iPSCs 无需免疫抑制即可诱导捐献者对二次异体移植物的特异性耐受

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tomoki Kamatani, Reiko Kimura, Satoshi Ikeda, Makoto Inoue, Ken-ichiro Seino
{"title":"移植到异体宿主体内的 iPSCs 无需免疫抑制即可诱导捐献者对二次异体移植物的特异性耐受","authors":"Tomoki Kamatani, Reiko Kimura, Satoshi Ikeda, Makoto Inoue, Ken-ichiro Seino","doi":"10.1073/pnas.2413398122","DOIUrl":null,"url":null,"abstract":"Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting. Here, we found that iPSCs subcutaneously inoculated into MHC-compatible allogeneic host mice resisted rejection and formed teratomas without immunosuppressant administration. Notably, when skin grafts were transplanted onto hosts more than 40 d after the initial iPSCs inoculation, only the skin of the same strain as the initial iPSCs was engrafted. Therefore, donor-specific immune tolerance was induced by a single iPSC inoculation. Diverse analyses, including single-cell RNA-sequencing after transplantation, revealed an increase in regulatory T cell (Treg) population, particularly CD25 <jats:sup>+</jats:sup> CD103 <jats:sup>+</jats:sup> effector Tregs within the teratoma and skin grafts. The removal of CD25 <jats:sup>+</jats:sup> or Foxp3 <jats:sup>+</jats:sup> cells suppressed the increase in effector Tregs and disrupted graft acceptance, indicating the importance of these cells in the establishment of immune tolerance. Within the teratoma, we observed an increase in TGF-β2 levels, suggesting an association with the increase in effector Tregs. Our results provide important insights for future applications of allogeneic iPSC-based cell or tissue transplantation.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"57 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"iPSCs engrafted in allogeneic hosts without immunosuppression induce donor-specific tolerance to secondary allografts\",\"authors\":\"Tomoki Kamatani, Reiko Kimura, Satoshi Ikeda, Makoto Inoue, Ken-ichiro Seino\",\"doi\":\"10.1073/pnas.2413398122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting. Here, we found that iPSCs subcutaneously inoculated into MHC-compatible allogeneic host mice resisted rejection and formed teratomas without immunosuppressant administration. Notably, when skin grafts were transplanted onto hosts more than 40 d after the initial iPSCs inoculation, only the skin of the same strain as the initial iPSCs was engrafted. Therefore, donor-specific immune tolerance was induced by a single iPSC inoculation. Diverse analyses, including single-cell RNA-sequencing after transplantation, revealed an increase in regulatory T cell (Treg) population, particularly CD25 <jats:sup>+</jats:sup> CD103 <jats:sup>+</jats:sup> effector Tregs within the teratoma and skin grafts. The removal of CD25 <jats:sup>+</jats:sup> or Foxp3 <jats:sup>+</jats:sup> cells suppressed the increase in effector Tregs and disrupted graft acceptance, indicating the importance of these cells in the establishment of immune tolerance. Within the teratoma, we observed an increase in TGF-β2 levels, suggesting an association with the increase in effector Tregs. Our results provide important insights for future applications of allogeneic iPSC-based cell or tissue transplantation.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2413398122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2413398122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目前,大多数使用诱导多能干细胞(iPSCs)进行的细胞或组织移植预计都涉及异体 iPSCs。然而,人们对异体 iPSCs 的免疫学特性还不甚了解。我们之前建立了一个小鼠移植模型,假定iPSC设置为低免疫原性的MHC兼容/小抗原不匹配组合。在这里,我们发现将 iPSC 皮下接种到 MHC 相容的异体宿主小鼠体内可抵抗排斥反应,并在不使用免疫抑制剂的情况下形成畸胎瘤。值得注意的是,在初次接种 iPSCs 超过 40 d 后,将皮肤移植到宿主身上时,只有与初次接种的 iPSCs 相同品系的皮肤被移植。因此,供体特异性免疫耐受是由单次iPSC接种诱导的。移植后的多种分析(包括单细胞 RNA 序列分析)显示,调节性 T 细胞(Treg)数量增加,尤其是畸胎瘤和皮肤移植物中的 CD25 + CD103 + 效应 Treg。移除 CD25 + 或 Foxp3 + 细胞抑制了效应 Treg 的增加并破坏了移植物的接受,这表明这些细胞在建立免疫耐受中的重要性。在畸胎瘤内,我们观察到 TGF-β2 水平的增加,这表明与效应 Tregs 的增加有关。我们的研究结果为基于异体 iPSC 的细胞或组织移植的未来应用提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
iPSCs engrafted in allogeneic hosts without immunosuppression induce donor-specific tolerance to secondary allografts
Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting. Here, we found that iPSCs subcutaneously inoculated into MHC-compatible allogeneic host mice resisted rejection and formed teratomas without immunosuppressant administration. Notably, when skin grafts were transplanted onto hosts more than 40 d after the initial iPSCs inoculation, only the skin of the same strain as the initial iPSCs was engrafted. Therefore, donor-specific immune tolerance was induced by a single iPSC inoculation. Diverse analyses, including single-cell RNA-sequencing after transplantation, revealed an increase in regulatory T cell (Treg) population, particularly CD25 + CD103 + effector Tregs within the teratoma and skin grafts. The removal of CD25 + or Foxp3 + cells suppressed the increase in effector Tregs and disrupted graft acceptance, indicating the importance of these cells in the establishment of immune tolerance. Within the teratoma, we observed an increase in TGF-β2 levels, suggesting an association with the increase in effector Tregs. Our results provide important insights for future applications of allogeneic iPSC-based cell or tissue transplantation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信