为基于磁隧道结的真随机数生成器设计材料和设备的人工智能指导框架。

Karan P Patel, Andrew Maicke, Jared Arzate, Jaesuk Kwon, J Darby Smith, James B Aimone, Jean Anne C Incorvia, Suma G Cardwell, Catherine D Schuman
{"title":"为基于磁隧道结的真随机数生成器设计材料和设备的人工智能指导框架。","authors":"Karan P Patel, Andrew Maicke, Jared Arzate, Jaesuk Kwon, J Darby Smith, James B Aimone, Jean Anne C Incorvia, Suma G Cardwell, Catherine D Schuman","doi":"10.1038/s44172-025-00376-8","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging devices, such as magnetic tunnel junctions, are key for energy-efficient, performant future computing systems. However, designing devices with the desirable specification and performance for these applications is often found to be time-consuming and non-trivial. Here, we investigate the design and optimization of spin-orbit torque and spin transfer torque magnetic tunnel junction models as the probabilistic devices for true random number generation. We leverage reinforcement learning and evolutionary optimization to vary key device and material properties of the various device models for stochastic operation. Our artificial-intelligence-guided codesign methods generated different candidate devices capable of generating stochastic samples for a desired probability distribution, while also minimizing energy usage for the devices. This framework can also be applied to other devices and applications.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"43"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897232/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-guided framework for the design of materials and devices for magnetic-tunnel-junction-based true random number generators.\",\"authors\":\"Karan P Patel, Andrew Maicke, Jared Arzate, Jaesuk Kwon, J Darby Smith, James B Aimone, Jean Anne C Incorvia, Suma G Cardwell, Catherine D Schuman\",\"doi\":\"10.1038/s44172-025-00376-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emerging devices, such as magnetic tunnel junctions, are key for energy-efficient, performant future computing systems. However, designing devices with the desirable specification and performance for these applications is often found to be time-consuming and non-trivial. Here, we investigate the design and optimization of spin-orbit torque and spin transfer torque magnetic tunnel junction models as the probabilistic devices for true random number generation. We leverage reinforcement learning and evolutionary optimization to vary key device and material properties of the various device models for stochastic operation. Our artificial-intelligence-guided codesign methods generated different candidate devices capable of generating stochastic samples for a desired probability distribution, while also minimizing energy usage for the devices. This framework can also be applied to other devices and applications.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897232/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00376-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00376-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新兴设备,如磁性隧道结,是节能、高性能的未来计算系统的关键。然而,为这些应用程序设计具有理想规格和性能的设备通常是耗时且不平凡的。本文研究了自旋轨道转矩和自旋传递转矩磁隧道结模型作为真随机数生成的概率器件的设计和优化。我们利用强化学习和进化优化来改变随机操作的各种器件模型的关键器件和材料特性。我们的人工智能引导协同设计方法生成了不同的候选设备,能够为期望的概率分布生成随机样本,同时也最大限度地减少了设备的能源使用。该框架也可以应用于其他设备和应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-guided framework for the design of materials and devices for magnetic-tunnel-junction-based true random number generators.

Emerging devices, such as magnetic tunnel junctions, are key for energy-efficient, performant future computing systems. However, designing devices with the desirable specification and performance for these applications is often found to be time-consuming and non-trivial. Here, we investigate the design and optimization of spin-orbit torque and spin transfer torque magnetic tunnel junction models as the probabilistic devices for true random number generation. We leverage reinforcement learning and evolutionary optimization to vary key device and material properties of the various device models for stochastic operation. Our artificial-intelligence-guided codesign methods generated different candidate devices capable of generating stochastic samples for a desired probability distribution, while also minimizing energy usage for the devices. This framework can also be applied to other devices and applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信