高分辨率7-特斯拉磁共振成像及后处理在健康成人膜性迷路三维重建中的应用。

4区 医学 Q2 Agricultural and Biological Sciences
Anatomical Record Pub Date : 2025-03-12 DOI:10.1002/ar.25647
Joon Soo Kim, Zahra N Sayyid, Diane Jung, Syed Ameen Ahmad, Jintong Li, Adrian Paez, Yinghao Li, Francis Deng, John P Carey, Jun Hua, Bryan K Ward
{"title":"高分辨率7-特斯拉磁共振成像及后处理在健康成人膜性迷路三维重建中的应用。","authors":"Joon Soo Kim, Zahra N Sayyid, Diane Jung, Syed Ameen Ahmad, Jintong Li, Adrian Paez, Yinghao Li, Francis Deng, John P Carey, Jun Hua, Bryan K Ward","doi":"10.1002/ar.25647","DOIUrl":null,"url":null,"abstract":"<p><p>The membranous labyrinth of the inner ear is a complex network of endolymph-filled structures critical for auditory and vestibular function. Pathological distension of these spaces, termed endolymphatic hydrops (EH), is associated with disorders such as Ménière's disease (MD). However, diagnosing inner ear pathologies remains challenging due to limitations in traditional imaging techniques, which lack the spatial resolution required to assess these intricate structures. Advances in 7-Tesla (7T) magnetic resonance imaging (MRI) now allow for high-resolution visualization of the inner ear. In this study, we used 7T T2-weighted and delayed post-contrast 3D-FLAIR sequences to improve visualization of the membranous labyrinth. As the inner ear region is particularly challenging for MRI due to severe transmit (B<sub>1</sub>) field inhomogeneity, dielectric pads and radiofrequency (RF) shimming were used to optimize the sequences. Subtracted images were processed using 3D segmentation techniques to isolate endolymphatic compartments, enabling the first in vivo 3D reconstructions using 7T MRI and volumetric analyses of the utricle, semicircular canal ducts, saccule, and cochlear duct. The total mean endolymphatic volume in five healthy adult participants was 192.62 mm<sup>3</sup> ± 36.83 mm<sup>3</sup>. These imaging techniques provide a quantitative framework for assessing EH and comparing normal versus diseased inner ear anatomy. Our findings demonstrate the potential of 7T MRI to enhance the diagnosis and understanding of inner ear disorders, particularly MD.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution 7-Tesla magnetic resonance imaging and post-processing for 3-dimensional reconstruction of the membranous labyrinth in healthy adults.\",\"authors\":\"Joon Soo Kim, Zahra N Sayyid, Diane Jung, Syed Ameen Ahmad, Jintong Li, Adrian Paez, Yinghao Li, Francis Deng, John P Carey, Jun Hua, Bryan K Ward\",\"doi\":\"10.1002/ar.25647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The membranous labyrinth of the inner ear is a complex network of endolymph-filled structures critical for auditory and vestibular function. Pathological distension of these spaces, termed endolymphatic hydrops (EH), is associated with disorders such as Ménière's disease (MD). However, diagnosing inner ear pathologies remains challenging due to limitations in traditional imaging techniques, which lack the spatial resolution required to assess these intricate structures. Advances in 7-Tesla (7T) magnetic resonance imaging (MRI) now allow for high-resolution visualization of the inner ear. In this study, we used 7T T2-weighted and delayed post-contrast 3D-FLAIR sequences to improve visualization of the membranous labyrinth. As the inner ear region is particularly challenging for MRI due to severe transmit (B<sub>1</sub>) field inhomogeneity, dielectric pads and radiofrequency (RF) shimming were used to optimize the sequences. Subtracted images were processed using 3D segmentation techniques to isolate endolymphatic compartments, enabling the first in vivo 3D reconstructions using 7T MRI and volumetric analyses of the utricle, semicircular canal ducts, saccule, and cochlear duct. The total mean endolymphatic volume in five healthy adult participants was 192.62 mm<sup>3</sup> ± 36.83 mm<sup>3</sup>. These imaging techniques provide a quantitative framework for assessing EH and comparing normal versus diseased inner ear anatomy. Our findings demonstrate the potential of 7T MRI to enhance the diagnosis and understanding of inner ear disorders, particularly MD.</p>\",\"PeriodicalId\":50793,\"journal\":{\"name\":\"Anatomical Record\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ar.25647\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.25647","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

内耳的膜质迷路是一个复杂的内淋巴填充结构网络,对听觉和前庭功能至关重要。这些间隙的病理性扩张,称为内淋巴水肿(EH),与mims病(MD)等疾病有关。然而,由于传统成像技术的限制,诊断内耳病变仍然具有挑战性,缺乏评估这些复杂结构所需的空间分辨率。7-特斯拉(7T)核磁共振成像(MRI)的进步现在允许对内耳进行高分辨率的可视化。在这项研究中,我们使用7T t2加权和延迟对比后3D-FLAIR序列来改善膜性迷路的可视化。由于严重的发射(B1)场不均匀性,内耳区域对MRI尤其具有挑战性,因此使用介电垫和射频(RF)调光来优化序列。利用3D分割技术对减影图像进行处理,分离内淋巴室,利用7T MRI和体积分析对耳蜗室、半规管、球囊和耳蜗道进行首次体内3D重建。5名健康成人的总平均内淋巴容积为192.62 mm3±36.83 mm3。这些成像技术为评估EH和比较正常与患病内耳解剖结构提供了定量框架。我们的研究结果证明了7T MRI在提高内耳疾病,特别是MD的诊断和理解方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution 7-Tesla magnetic resonance imaging and post-processing for 3-dimensional reconstruction of the membranous labyrinth in healthy adults.

The membranous labyrinth of the inner ear is a complex network of endolymph-filled structures critical for auditory and vestibular function. Pathological distension of these spaces, termed endolymphatic hydrops (EH), is associated with disorders such as Ménière's disease (MD). However, diagnosing inner ear pathologies remains challenging due to limitations in traditional imaging techniques, which lack the spatial resolution required to assess these intricate structures. Advances in 7-Tesla (7T) magnetic resonance imaging (MRI) now allow for high-resolution visualization of the inner ear. In this study, we used 7T T2-weighted and delayed post-contrast 3D-FLAIR sequences to improve visualization of the membranous labyrinth. As the inner ear region is particularly challenging for MRI due to severe transmit (B1) field inhomogeneity, dielectric pads and radiofrequency (RF) shimming were used to optimize the sequences. Subtracted images were processed using 3D segmentation techniques to isolate endolymphatic compartments, enabling the first in vivo 3D reconstructions using 7T MRI and volumetric analyses of the utricle, semicircular canal ducts, saccule, and cochlear duct. The total mean endolymphatic volume in five healthy adult participants was 192.62 mm3 ± 36.83 mm3. These imaging techniques provide a quantitative framework for assessing EH and comparing normal versus diseased inner ear anatomy. Our findings demonstrate the potential of 7T MRI to enhance the diagnosis and understanding of inner ear disorders, particularly MD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anatomical Record
Anatomical Record Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
4.30
自引率
0.00%
发文量
0
期刊介绍: The Anatomical Record
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信