中国小麦宽杂交与染色体工程育种。

Q3 Medicine
遗传 Pub Date : 2025-03-01 DOI:10.16288/j.yczz.24-334
Qi Zheng, Li Zhao, Bin Li, Hongwei Li, Wanquan Ji, Xueyong Zhang
{"title":"中国小麦宽杂交与染色体工程育种。","authors":"Qi Zheng, Li Zhao, Bin Li, Hongwei Li, Wanquan Ji, Xueyong Zhang","doi":"10.16288/j.yczz.24-334","DOIUrl":null,"url":null,"abstract":"<p><p>As the second important staple crop next to rice in China, common wheat (<i>Triticum aestivum</i>) plays a decisive role in national food security. Wild and semi-wild relatives of wheat provide abundant genetic resources for wheat genetic improvement. In China, wheat wide hybridization and chromosome engineering breeding initiated in the 1950s and developed into a well-defined theoretical and technical system over the next three decades through learning, exploration and practice. Subsequently, the technological innovation in alien chromatin identification and the isolation and analysis of alien resistance genes sponsored by continuous national projects have significantly enhanced China's impact on the world in this field. Eminent scientists such as Professor Li Zhensheng, who was awarded the Medal of the Republic before the National Day in 2024, have made outstanding contributions to the establishment and development of the research in this area in China. This article reviews the history of wheat wide hybridization and chromosome engineering breeding in China, aiming to honor the senior scientists and inspire future researchers to work hard in germplasm innovation and alien gene transfer, cloning and utilization in breeding.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 3","pages":"289-299"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wheat wide hybridization and chromosome engineering breeding in China.\",\"authors\":\"Qi Zheng, Li Zhao, Bin Li, Hongwei Li, Wanquan Ji, Xueyong Zhang\",\"doi\":\"10.16288/j.yczz.24-334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the second important staple crop next to rice in China, common wheat (<i>Triticum aestivum</i>) plays a decisive role in national food security. Wild and semi-wild relatives of wheat provide abundant genetic resources for wheat genetic improvement. In China, wheat wide hybridization and chromosome engineering breeding initiated in the 1950s and developed into a well-defined theoretical and technical system over the next three decades through learning, exploration and practice. Subsequently, the technological innovation in alien chromatin identification and the isolation and analysis of alien resistance genes sponsored by continuous national projects have significantly enhanced China's impact on the world in this field. Eminent scientists such as Professor Li Zhensheng, who was awarded the Medal of the Republic before the National Day in 2024, have made outstanding contributions to the establishment and development of the research in this area in China. This article reviews the history of wheat wide hybridization and chromosome engineering breeding in China, aiming to honor the senior scientists and inspire future researchers to work hard in germplasm innovation and alien gene transfer, cloning and utilization in breeding.</p>\",\"PeriodicalId\":35536,\"journal\":{\"name\":\"遗传\",\"volume\":\"47 3\",\"pages\":\"289-299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遗传\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.16288/j.yczz.24-334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

普通小麦(Triticum aestivum)作为中国仅次于水稻的第二大主粮作物,在国家粮食安全中起着举足轻重的作用。小麦野生近缘和半野生近缘为小麦遗传改良提供了丰富的遗传资源。在中国,小麦全杂交和染色体工程育种始于20世纪50年代,经过30多年的学习、探索和实践,形成了较为完善的理论和技术体系。随后,外源染色质鉴定方面的技术创新和外源抗性基因的分离与分析,在连续的国家项目资助下,显著增强了中国在该领域对世界的影响。杰出的科学家,如李振生教授,在2024年国庆节前被授予共和国勋章,为中国这一领域的研究的建立和发展做出了杰出的贡献。本文回顾了中国小麦全杂交和染色体工程育种的发展历程,旨在向这些前辈致敬,并激励未来的研究人员在种质创新和外源基因的转移、克隆和育种利用等方面努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wheat wide hybridization and chromosome engineering breeding in China.

As the second important staple crop next to rice in China, common wheat (Triticum aestivum) plays a decisive role in national food security. Wild and semi-wild relatives of wheat provide abundant genetic resources for wheat genetic improvement. In China, wheat wide hybridization and chromosome engineering breeding initiated in the 1950s and developed into a well-defined theoretical and technical system over the next three decades through learning, exploration and practice. Subsequently, the technological innovation in alien chromatin identification and the isolation and analysis of alien resistance genes sponsored by continuous national projects have significantly enhanced China's impact on the world in this field. Eminent scientists such as Professor Li Zhensheng, who was awarded the Medal of the Republic before the National Day in 2024, have made outstanding contributions to the establishment and development of the research in this area in China. This article reviews the history of wheat wide hybridization and chromosome engineering breeding in China, aiming to honor the senior scientists and inspire future researchers to work hard in germplasm innovation and alien gene transfer, cloning and utilization in breeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍: Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信