受物种分化因素影响的巴尔通体差异转录组分析。

Q3 Medicine
遗传 Pub Date : 2025-03-01 DOI:10.16288/j.yczz.24-201
Min Chen, Na Han, Yu Miao, Yujun Qiang, Wen Zhang, Pengbo Liu, Qiyong Liu, Dongmei Li
{"title":"受物种分化因素影响的巴尔通体差异转录组分析。","authors":"Min Chen, Na Han, Yu Miao, Yujun Qiang, Wen Zhang, Pengbo Liu, Qiyong Liu, Dongmei Li","doi":"10.16288/j.yczz.24-201","DOIUrl":null,"url":null,"abstract":"<p><p>To reveal the differences in transcript levels of <i>Bartonella</i> spp. from different species and hosts and their impacts on phylogenetic relationships, we focus on 27 strains from four <i>Bartonella</i> species (<i>B. henselae</i>, <i>B. koehlerae</i>, <i>B. clarridgeiae</i> and <i>B. quintana</i>) and three hosts (<i>Felis catus</i>, <i>Homo sapiens</i> and <i>Macaca mulatta</i>) to conduct the transcriptome sequencing using Illumina high-throughput sequencing technology. Gene expression differences between strains from different species and hosts are analyzed, and the results of phylogenetic analysis at the transcriptome and genome levels are compared. The results show significant differences in gene transcription between strains from different species and hosts. Twelve genes are screened, including <i>virB10</i>, <i>bepC</i> and <i>virB4</i>, which may facilitate host-specific recognition. Furthermore, phylogenetic analysis based on SNPs within the core genes of the transcriptome demonstrate species-specific clustering patterns among strains. Further analysis indicate that host factors influence the genetic divergence of strains, while geographic factors exert a small impact on this process. These findings are congruent with the phylogenetic analysis of SNPs in the core genes of the genome. Our study uses differential transcriptome analysis to reveal the genetic divergence and phylogenetic relationships of <i>Bartonella</i> species. And the observed regular differences between strains from different species and hosts are found to correspond with the results of traditional genome analysis. Thus, our results indicate the utility of transcriptome data in efficiently investigating the genetic divergence between species.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"47 3","pages":"366-381"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential transcriptome profiling of <i>Bartonella</i> spp. influenced by the species divergence factors.\",\"authors\":\"Min Chen, Na Han, Yu Miao, Yujun Qiang, Wen Zhang, Pengbo Liu, Qiyong Liu, Dongmei Li\",\"doi\":\"10.16288/j.yczz.24-201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To reveal the differences in transcript levels of <i>Bartonella</i> spp. from different species and hosts and their impacts on phylogenetic relationships, we focus on 27 strains from four <i>Bartonella</i> species (<i>B. henselae</i>, <i>B. koehlerae</i>, <i>B. clarridgeiae</i> and <i>B. quintana</i>) and three hosts (<i>Felis catus</i>, <i>Homo sapiens</i> and <i>Macaca mulatta</i>) to conduct the transcriptome sequencing using Illumina high-throughput sequencing technology. Gene expression differences between strains from different species and hosts are analyzed, and the results of phylogenetic analysis at the transcriptome and genome levels are compared. The results show significant differences in gene transcription between strains from different species and hosts. Twelve genes are screened, including <i>virB10</i>, <i>bepC</i> and <i>virB4</i>, which may facilitate host-specific recognition. Furthermore, phylogenetic analysis based on SNPs within the core genes of the transcriptome demonstrate species-specific clustering patterns among strains. Further analysis indicate that host factors influence the genetic divergence of strains, while geographic factors exert a small impact on this process. These findings are congruent with the phylogenetic analysis of SNPs in the core genes of the genome. Our study uses differential transcriptome analysis to reveal the genetic divergence and phylogenetic relationships of <i>Bartonella</i> species. And the observed regular differences between strains from different species and hosts are found to correspond with the results of traditional genome analysis. Thus, our results indicate the utility of transcriptome data in efficiently investigating the genetic divergence between species.</p>\",\"PeriodicalId\":35536,\"journal\":{\"name\":\"遗传\",\"volume\":\"47 3\",\"pages\":\"366-381\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遗传\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.16288/j.yczz.24-201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

为了揭示不同物种和宿主巴尔通体的转录水平差异及其对系统发育关系的影响,我们以4种巴尔通体(B. henselae, B. koehlerae, B. clarridgeiae和B. quintana)和3种宿主(Felis catus, Homo sapiens和Macaca mulatta)的27株巴尔通体为研究对象,采用Illumina高通量测序技术进行转录组测序。分析了不同物种和宿主菌株之间的基因表达差异,并比较了转录组和基因组水平上的系统发育分析结果。结果表明,来自不同物种和宿主的菌株在基因转录方面存在显著差异。筛选到12个可能促进宿主特异性识别的基因,包括virB10、bepC和virB4。此外,基于转录组核心基因内snp的系统发育分析显示菌株之间具有物种特异性聚类模式。进一步分析表明,寄主因素影响菌株的遗传分化,而地理因素对这一过程的影响较小。这些发现与基因组核心基因snp的系统发育分析一致。本研究利用差异转录组分析揭示巴尔通体物种的遗传分化和系统发育关系。不同物种和宿主菌株间的差异与传统的基因组分析结果一致。因此,我们的结果表明转录组数据在有效研究物种间遗传差异方面的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential transcriptome profiling of Bartonella spp. influenced by the species divergence factors.

To reveal the differences in transcript levels of Bartonella spp. from different species and hosts and their impacts on phylogenetic relationships, we focus on 27 strains from four Bartonella species (B. henselae, B. koehlerae, B. clarridgeiae and B. quintana) and three hosts (Felis catus, Homo sapiens and Macaca mulatta) to conduct the transcriptome sequencing using Illumina high-throughput sequencing technology. Gene expression differences between strains from different species and hosts are analyzed, and the results of phylogenetic analysis at the transcriptome and genome levels are compared. The results show significant differences in gene transcription between strains from different species and hosts. Twelve genes are screened, including virB10, bepC and virB4, which may facilitate host-specific recognition. Furthermore, phylogenetic analysis based on SNPs within the core genes of the transcriptome demonstrate species-specific clustering patterns among strains. Further analysis indicate that host factors influence the genetic divergence of strains, while geographic factors exert a small impact on this process. These findings are congruent with the phylogenetic analysis of SNPs in the core genes of the genome. Our study uses differential transcriptome analysis to reveal the genetic divergence and phylogenetic relationships of Bartonella species. And the observed regular differences between strains from different species and hosts are found to correspond with the results of traditional genome analysis. Thus, our results indicate the utility of transcriptome data in efficiently investigating the genetic divergence between species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍: Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信