Haicheng Xiao, Xueyan Shen, Jianglin Li, Xiujian Yang
{"title":"基于特征组合预测模型的交通数据填充方法。","authors":"Haicheng Xiao, Xueyan Shen, Jianglin Li, Xiujian Yang","doi":"10.1038/s41598-025-92547-y","DOIUrl":null,"url":null,"abstract":"<p><p>Data imputation is a critical step in data processing, directly influencing the accuracy of subsequent research. However, due to the temporal nature of ride-hailing trajectory data, traditional imputation methods often struggle to adequately consider spatiotemporal characteristics, leading to limitations in both convergence speed and accuracy. To address this issue, this study employs a prediction-based approach to enhance imputation accuracy. Given the limited feature parameters in trajectory data, traditional prediction models often fail to comprehensively capture data characteristics. Therefore, this study proposes a feature generation model based on LightGBM-GRU, combined with a SARIMA-GRU prediction model, to more thoroughly capture and enrich the data characteristics. This approach effectively imputes missing data, thereby laying a solid foundation for subsequent research.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8441"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897214/pdf/","citationCount":"0","resultStr":"{\"title\":\"A method for filling traffic data based on feature-based combination prediction model.\",\"authors\":\"Haicheng Xiao, Xueyan Shen, Jianglin Li, Xiujian Yang\",\"doi\":\"10.1038/s41598-025-92547-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data imputation is a critical step in data processing, directly influencing the accuracy of subsequent research. However, due to the temporal nature of ride-hailing trajectory data, traditional imputation methods often struggle to adequately consider spatiotemporal characteristics, leading to limitations in both convergence speed and accuracy. To address this issue, this study employs a prediction-based approach to enhance imputation accuracy. Given the limited feature parameters in trajectory data, traditional prediction models often fail to comprehensively capture data characteristics. Therefore, this study proposes a feature generation model based on LightGBM-GRU, combined with a SARIMA-GRU prediction model, to more thoroughly capture and enrich the data characteristics. This approach effectively imputes missing data, thereby laying a solid foundation for subsequent research.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"8441\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-92547-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92547-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A method for filling traffic data based on feature-based combination prediction model.
Data imputation is a critical step in data processing, directly influencing the accuracy of subsequent research. However, due to the temporal nature of ride-hailing trajectory data, traditional imputation methods often struggle to adequately consider spatiotemporal characteristics, leading to limitations in both convergence speed and accuracy. To address this issue, this study employs a prediction-based approach to enhance imputation accuracy. Given the limited feature parameters in trajectory data, traditional prediction models often fail to comprehensively capture data characteristics. Therefore, this study proposes a feature generation model based on LightGBM-GRU, combined with a SARIMA-GRU prediction model, to more thoroughly capture and enrich the data characteristics. This approach effectively imputes missing data, thereby laying a solid foundation for subsequent research.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.