生物人类学中严谨系统的定性数据分析

IF 1.7 2区 生物学 Q1 ANTHROPOLOGY
Amber Wutich, Robin Nelson, L Zachary DuBois, Claudia M Astorino, Kelly Knudson, Austin W Reynolds, Erin P Riley, Rick W A Smith, Caroline VanSickle, Stephanie Russo Carroll, Ca'la K Connors, Jelena Jankovic-Rankovic, Charlayne Mitchell, Anaís Delilah Roque, Krystal Sara Tsosie
{"title":"生物人类学中严谨系统的定性数据分析","authors":"Amber Wutich, Robin Nelson, L Zachary DuBois, Claudia M Astorino, Kelly Knudson, Austin W Reynolds, Erin P Riley, Rick W A Smith, Caroline VanSickle, Stephanie Russo Carroll, Ca'la K Connors, Jelena Jankovic-Rankovic, Charlayne Mitchell, Anaís Delilah Roque, Krystal Sara Tsosie","doi":"10.1002/ajpa.70008","DOIUrl":null,"url":null,"abstract":"<p><p>Biological anthropologists have long engaged in qualitative data analysis (QDA), though such work is not always foregrounded. In this article, we discuss the role of rigorous and systematic QDA in biological anthropology and consider how it can be understood and advanced. We first establish what kinds of qualitative data and analysis are used in biological anthropology. We then review the ways QDA has been used in six subfields of biological anthropology: primatology, human biology, paleoanthropology, dental and skeletal biology, bioarchaeology, and anthropological genetics. We follow that with an overview of how to use QDA methods: three simple QDA methods (i.e., word-based analysis, theme analysis, and coding) and three QDA approaches for model-building and model-testing (i.e., content analysis, semantic network analysis, and grounded theory). With this foundation in place, we discuss how QDA can support transformative research in biological anthropology-emphasizing the valuable role of QDA in inductive and community-based research. We discuss how QDA supports transformative research using mixed-methods research designs, participatory action research, and abolition and Black feminist research. Finally, we consider how to close a QDA project, reflecting on the logistics, ethics, and limitations of qualitative data sharing, including how researchers can use the CARE Principles (Collective Benefit, Authority to Control, Responsibility, and Ethics) to support Indigenous data sovereignty.</p>","PeriodicalId":29759,"journal":{"name":"American Journal of Biological Anthropology","volume":"186 Suppl 78 ","pages":"e70008"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"Rigorous and Systematic Qualitative Data Analysis in Biological Anthropology\\\".\",\"authors\":\"Amber Wutich, Robin Nelson, L Zachary DuBois, Claudia M Astorino, Kelly Knudson, Austin W Reynolds, Erin P Riley, Rick W A Smith, Caroline VanSickle, Stephanie Russo Carroll, Ca'la K Connors, Jelena Jankovic-Rankovic, Charlayne Mitchell, Anaís Delilah Roque, Krystal Sara Tsosie\",\"doi\":\"10.1002/ajpa.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological anthropologists have long engaged in qualitative data analysis (QDA), though such work is not always foregrounded. In this article, we discuss the role of rigorous and systematic QDA in biological anthropology and consider how it can be understood and advanced. We first establish what kinds of qualitative data and analysis are used in biological anthropology. We then review the ways QDA has been used in six subfields of biological anthropology: primatology, human biology, paleoanthropology, dental and skeletal biology, bioarchaeology, and anthropological genetics. We follow that with an overview of how to use QDA methods: three simple QDA methods (i.e., word-based analysis, theme analysis, and coding) and three QDA approaches for model-building and model-testing (i.e., content analysis, semantic network analysis, and grounded theory). With this foundation in place, we discuss how QDA can support transformative research in biological anthropology-emphasizing the valuable role of QDA in inductive and community-based research. We discuss how QDA supports transformative research using mixed-methods research designs, participatory action research, and abolition and Black feminist research. Finally, we consider how to close a QDA project, reflecting on the logistics, ethics, and limitations of qualitative data sharing, including how researchers can use the CARE Principles (Collective Benefit, Authority to Control, Responsibility, and Ethics) to support Indigenous data sovereignty.</p>\",\"PeriodicalId\":29759,\"journal\":{\"name\":\"American Journal of Biological Anthropology\",\"volume\":\"186 Suppl 78 \",\"pages\":\"e70008\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Biological Anthropology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ajpa.70008\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Biological Anthropology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ajpa.70008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物人类学家长期从事定性数据分析(QDA),尽管这类工作并不总是很有前景。在本文中,我们讨论了严格和系统的QDA在生物人类学中的作用,并考虑了如何理解和推进它。我们首先确定在生物人类学中使用什么样的定性数据和分析。然后,我们回顾了QDA在生物人类学的六个子领域中的应用方式:灵长类学、人类生物学、古人类学、牙齿和骨骼生物学、生物考古学和人类学遗传学。接下来,我们概述了如何使用QDA方法:三种简单的QDA方法(即基于单词的分析、主题分析和编码)和三种用于模型构建和模型测试的QDA方法(即内容分析、语义网络分析和扎根理论)。有了这个基础,我们将讨论QDA如何支持生物人类学的变革性研究,强调QDA在归纳和社区研究中的重要作用。我们讨论了QDA如何使用混合方法研究设计、参与性行动研究、废奴和黑人女权主义研究来支持变革性研究。最后,我们考虑如何结束QDA项目,反思定性数据共享的后勤、伦理和局限性,包括研究人员如何使用CARE原则(集体利益、控制权力、责任和伦理)来支持土著数据主权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Rigorous and Systematic Qualitative Data Analysis in Biological Anthropology".

Biological anthropologists have long engaged in qualitative data analysis (QDA), though such work is not always foregrounded. In this article, we discuss the role of rigorous and systematic QDA in biological anthropology and consider how it can be understood and advanced. We first establish what kinds of qualitative data and analysis are used in biological anthropology. We then review the ways QDA has been used in six subfields of biological anthropology: primatology, human biology, paleoanthropology, dental and skeletal biology, bioarchaeology, and anthropological genetics. We follow that with an overview of how to use QDA methods: three simple QDA methods (i.e., word-based analysis, theme analysis, and coding) and three QDA approaches for model-building and model-testing (i.e., content analysis, semantic network analysis, and grounded theory). With this foundation in place, we discuss how QDA can support transformative research in biological anthropology-emphasizing the valuable role of QDA in inductive and community-based research. We discuss how QDA supports transformative research using mixed-methods research designs, participatory action research, and abolition and Black feminist research. Finally, we consider how to close a QDA project, reflecting on the logistics, ethics, and limitations of qualitative data sharing, including how researchers can use the CARE Principles (Collective Benefit, Authority to Control, Responsibility, and Ethics) to support Indigenous data sovereignty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信