UV-B对珍珠粟品种生长、产量和品质性状的调控,凸显了源库关系的改变。

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Pooja Singh, Krishna Kumar Choudhary
{"title":"UV-B对珍珠粟品种生长、产量和品质性状的调控,凸显了源库关系的改变。","authors":"Pooja Singh, Krishna Kumar Choudhary","doi":"10.1111/ppl.70141","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change and stratospheric ozone layer dynamics have altered the intensity of ultraviolet B (UV-B) radiation, affecting the growth, yield, and metabolic responses of major cereal crops. As a result, to meet the future demand scenario for growing population and health concerns, millets have been recognized as important substitutes. Among them, pearl millet has shown resilience against various abiotic stresses, but its response to UV-B radiation has not yet been explored. Recognizing its importance in present global food systems, the present investigation aimed to analyse the effect of elevated UV-B (eUV-B; ambient+7.2 kJm<sup>-2</sup>d<sup>-1</sup>) on four cultivars (HHB-272, HHB-67, MPMH-21, and MPMH-17) of pearl millet during panicle development stage and grain filling stage under natural field conditions. The results indicated that UV-B stress altered growth morphology (plant height, number of leaves, leaf area, and panicle length) at both stages, with less pronounced effects on cultivars HHB-272 and HHB-67. Declined growth indices [relative growth rate (RGR), absolute growth rate (AGR), net assimilation rate (NAR), and leaf area ratio (LAR)] at panicle stage revealed predominance of UV-B stress. Grain yield was positively affected in all the cultivars, indicating better resource allocation to different important needs, thereby altering the trade-offs between growth and development as reported in our present study. The grain quality (total soluble sugars, reducing sugars, total free amino acids, starch content, soluble protein) of harvested seeds exhibited a decreased quality response index, and metabolic pathway analysis of the metabolites identified through UHPLC-HRMS indicated a shift in photoassimilates towards fatty acid biosynthesis. These findings help to understand various plant metabolic pathways, potentially revealing the resilience mechanism involved in pearl millet under eUV-B exposure.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70141"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV-B orchestration of growth, yield and grain quality traits highlights modifications of source-to-sink relationship in pearl millet cultivars.\",\"authors\":\"Pooja Singh, Krishna Kumar Choudhary\",\"doi\":\"10.1111/ppl.70141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change and stratospheric ozone layer dynamics have altered the intensity of ultraviolet B (UV-B) radiation, affecting the growth, yield, and metabolic responses of major cereal crops. As a result, to meet the future demand scenario for growing population and health concerns, millets have been recognized as important substitutes. Among them, pearl millet has shown resilience against various abiotic stresses, but its response to UV-B radiation has not yet been explored. Recognizing its importance in present global food systems, the present investigation aimed to analyse the effect of elevated UV-B (eUV-B; ambient+7.2 kJm<sup>-2</sup>d<sup>-1</sup>) on four cultivars (HHB-272, HHB-67, MPMH-21, and MPMH-17) of pearl millet during panicle development stage and grain filling stage under natural field conditions. The results indicated that UV-B stress altered growth morphology (plant height, number of leaves, leaf area, and panicle length) at both stages, with less pronounced effects on cultivars HHB-272 and HHB-67. Declined growth indices [relative growth rate (RGR), absolute growth rate (AGR), net assimilation rate (NAR), and leaf area ratio (LAR)] at panicle stage revealed predominance of UV-B stress. Grain yield was positively affected in all the cultivars, indicating better resource allocation to different important needs, thereby altering the trade-offs between growth and development as reported in our present study. The grain quality (total soluble sugars, reducing sugars, total free amino acids, starch content, soluble protein) of harvested seeds exhibited a decreased quality response index, and metabolic pathway analysis of the metabolites identified through UHPLC-HRMS indicated a shift in photoassimilates towards fatty acid biosynthesis. These findings help to understand various plant metabolic pathways, potentially revealing the resilience mechanism involved in pearl millet under eUV-B exposure.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70141\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70141\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70141","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

气候变化和平流层臭氧层动态改变了紫外线B (UV-B)辐射强度,影响了主要谷类作物的生长、产量和代谢反应。因此,为了满足日益增长的人口和健康问题的未来需求,小米已被认为是重要的替代品。其中,珍珠粟对多种非生物胁迫表现出抗逆性,但其对UV-B辐射的响应尚未探索。认识到其在当前全球食品系统中的重要性,本研究旨在分析UV-B (eUV-B;在自然田间条件下,4个珍珠粟品种(HHB-272、HHB-67、MPMH-21和MPMH-17)穗部发育阶段和灌浆阶段的环境温度为+7.2 kkm -2d-1。结果表明,UV-B胁迫改变了两个生育期的生长形态(株高、叶数、叶面积和穗长),但对HHB-272和HHB-67的影响不明显。相对生长率(RGR)、绝对生长率(AGR)、净同化率(NAR)和叶面积比(LAR)等生长指标在穗期呈下降趋势,表明UV-B胁迫对植物生长有利。所有品种的粮食产量都受到积极影响,表明资源更好地分配给不同的重要需求,从而改变了本研究中报告的生长与发展之间的权衡。籽粒品质(总可溶性糖、还原糖、总游离氨基酸、淀粉含量、可溶性蛋白)的质量响应指数下降,UHPLC-HRMS代谢途径分析表明,光合产物向脂肪酸生物合成转变。这些发现有助于了解各种植物代谢途径,并有可能揭示珍珠粟在eUV-B暴露下的恢复机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UV-B orchestration of growth, yield and grain quality traits highlights modifications of source-to-sink relationship in pearl millet cultivars.

Climate change and stratospheric ozone layer dynamics have altered the intensity of ultraviolet B (UV-B) radiation, affecting the growth, yield, and metabolic responses of major cereal crops. As a result, to meet the future demand scenario for growing population and health concerns, millets have been recognized as important substitutes. Among them, pearl millet has shown resilience against various abiotic stresses, but its response to UV-B radiation has not yet been explored. Recognizing its importance in present global food systems, the present investigation aimed to analyse the effect of elevated UV-B (eUV-B; ambient+7.2 kJm-2d-1) on four cultivars (HHB-272, HHB-67, MPMH-21, and MPMH-17) of pearl millet during panicle development stage and grain filling stage under natural field conditions. The results indicated that UV-B stress altered growth morphology (plant height, number of leaves, leaf area, and panicle length) at both stages, with less pronounced effects on cultivars HHB-272 and HHB-67. Declined growth indices [relative growth rate (RGR), absolute growth rate (AGR), net assimilation rate (NAR), and leaf area ratio (LAR)] at panicle stage revealed predominance of UV-B stress. Grain yield was positively affected in all the cultivars, indicating better resource allocation to different important needs, thereby altering the trade-offs between growth and development as reported in our present study. The grain quality (total soluble sugars, reducing sugars, total free amino acids, starch content, soluble protein) of harvested seeds exhibited a decreased quality response index, and metabolic pathway analysis of the metabolites identified through UHPLC-HRMS indicated a shift in photoassimilates towards fatty acid biosynthesis. These findings help to understand various plant metabolic pathways, potentially revealing the resilience mechanism involved in pearl millet under eUV-B exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信