{"title":"富氢水对草莓盐胁迫的缓解:生理、转录组学和代谢组学反应。","authors":"Renyuan Wang, Shaohua Chu, Dan Zhang, Kashif Hayat, Xia Zhang, Yaowei Chi, Xianzhong Ma, Xunfeng Chen, Haiyan Yang, Wenjiang Ding, Ting Zhao, Yongfeng Ren, Xijia Yang, Pei Zhou","doi":"10.1111/ppl.70151","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing impacts of climate change and intensified human activities exacerbate soil salinization, posing significant challenges to agricultural productivity. Therefore, addressing salt stress in crops is a critical area of research. In this study, strawberry seedlings (Fragaria×ananassa Duch. 'Benihoppe') were used to investigate the alleviating effects of hydrogen-rich water (HRW) on salt stress through integrated transcriptomic and metabolomic analyses. HRW treatment was found to significantly enhance plant growth, notably increasing root biomass by 49.50%. Additionally, HRW modulated key parameters, including the levels of soluble sugars, malondialdehyde (MDA), and antioxidant enzyme activities, while promoting K<sup>+</sup> uptake and Na<sup>+</sup> exclusion. Transcriptomic analysis revealed that HRW induced the expression of genes associated with ion transport, antioxidant defence, and cell wall biosynthesis in roots. Metabolomic profiling identified phenolic acids, flavonoids, and amino acids as critical metabolites in HRW-mediated salt stress mitigation. Integrated multi-omics analysis highlighted two key metabolic pathways, phenylpropanoid biosynthesis and amino and nucleoside sugar metabolism, pivotal to the observed protective effects. This study provides molecular insights into the mechanisms by which HRW alleviates salt stress in strawberry seedlings, underscoring the potential of hydrogen gas applications in sustainable agriculture.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70151"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alleviation of salt stress in strawberries by hydrogen-rich water: Physiological, transcriptomic and metabolomic responses.\",\"authors\":\"Renyuan Wang, Shaohua Chu, Dan Zhang, Kashif Hayat, Xia Zhang, Yaowei Chi, Xianzhong Ma, Xunfeng Chen, Haiyan Yang, Wenjiang Ding, Ting Zhao, Yongfeng Ren, Xijia Yang, Pei Zhou\",\"doi\":\"10.1111/ppl.70151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing impacts of climate change and intensified human activities exacerbate soil salinization, posing significant challenges to agricultural productivity. Therefore, addressing salt stress in crops is a critical area of research. In this study, strawberry seedlings (Fragaria×ananassa Duch. 'Benihoppe') were used to investigate the alleviating effects of hydrogen-rich water (HRW) on salt stress through integrated transcriptomic and metabolomic analyses. HRW treatment was found to significantly enhance plant growth, notably increasing root biomass by 49.50%. Additionally, HRW modulated key parameters, including the levels of soluble sugars, malondialdehyde (MDA), and antioxidant enzyme activities, while promoting K<sup>+</sup> uptake and Na<sup>+</sup> exclusion. Transcriptomic analysis revealed that HRW induced the expression of genes associated with ion transport, antioxidant defence, and cell wall biosynthesis in roots. Metabolomic profiling identified phenolic acids, flavonoids, and amino acids as critical metabolites in HRW-mediated salt stress mitigation. Integrated multi-omics analysis highlighted two key metabolic pathways, phenylpropanoid biosynthesis and amino and nucleoside sugar metabolism, pivotal to the observed protective effects. This study provides molecular insights into the mechanisms by which HRW alleviates salt stress in strawberry seedlings, underscoring the potential of hydrogen gas applications in sustainable agriculture.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70151\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70151\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70151","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Alleviation of salt stress in strawberries by hydrogen-rich water: Physiological, transcriptomic and metabolomic responses.
The increasing impacts of climate change and intensified human activities exacerbate soil salinization, posing significant challenges to agricultural productivity. Therefore, addressing salt stress in crops is a critical area of research. In this study, strawberry seedlings (Fragaria×ananassa Duch. 'Benihoppe') were used to investigate the alleviating effects of hydrogen-rich water (HRW) on salt stress through integrated transcriptomic and metabolomic analyses. HRW treatment was found to significantly enhance plant growth, notably increasing root biomass by 49.50%. Additionally, HRW modulated key parameters, including the levels of soluble sugars, malondialdehyde (MDA), and antioxidant enzyme activities, while promoting K+ uptake and Na+ exclusion. Transcriptomic analysis revealed that HRW induced the expression of genes associated with ion transport, antioxidant defence, and cell wall biosynthesis in roots. Metabolomic profiling identified phenolic acids, flavonoids, and amino acids as critical metabolites in HRW-mediated salt stress mitigation. Integrated multi-omics analysis highlighted two key metabolic pathways, phenylpropanoid biosynthesis and amino and nucleoside sugar metabolism, pivotal to the observed protective effects. This study provides molecular insights into the mechanisms by which HRW alleviates salt stress in strawberry seedlings, underscoring the potential of hydrogen gas applications in sustainable agriculture.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.