花椒促生长内生细菌的分离与鉴定。

IF 3.4 3区 生物学 Q1 PLANT SCIENCES
Lingyu Fei, Ziying Hou, Yuan Wang, Jikang Sun, Tingting An, Qiuyun Li
{"title":"花椒促生长内生细菌的分离与鉴定。","authors":"Lingyu Fei, Ziying Hou, Yuan Wang, Jikang Sun, Tingting An, Qiuyun Li","doi":"10.1007/s12298-025-01552-y","DOIUrl":null,"url":null,"abstract":"<p><p>The slow growth rate of <i>Zanthoxylum dissitum</i> Hemsl. (Zanthoxylum) is the important factor causing the scarcity of its available wild resource. It has been reported that the plant endophytes can promote the plant growth and the synthesis of secondary metabolitesby by enhancing the efficiency of nutrient absorption by plants and regulating plant hormones. It is important to explore the promoting effects of endophytes on the growth of Zanthoxylum. The application of high-throughput sequencing technology in this study revealed the presence of three phyla, five classes, seven orders, and eleven genera of endophytic bacteria in Zanthoxylum. The most prevalent phyla, classes, orders, and genera were identified respectively as Proteobacteria, Gammaproteobacteria, Burkholderiales, and Pseudomonas. In this study, an endophytic growth-promoting bacterium was isolated and identified as <i>Sphingomonas</i> sp. The results revealed that the bacterium exhibited robust nitrogen fixation, phosphorus solubilization, and effective siderophore production capabilities. The phosphate solubilization index (SI) was found to be (1.266 ± 0.0157). Following a 48-h incubation period in an inorganic phosphorus liquid medium (PKO), the concentration of auxin (IAA) and gibberellin (GA) reached their highest levels, at (138.145 ± 65.111) μg/mL and (805.74 ± 123.86) μg/mL, respectively. Moreover, the study showed that the endophytic bacteria markedly enhanced the germination potential and rate of sorghum seeds, and promoted significantly the growth of the tissue culture seedlings of Zanthoxylum.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 2","pages":"299-310"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890836/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation and evaluation of growth-promoting endophytic bacteria from <i>Zanthoxylum dissitum</i> Hemsl.\",\"authors\":\"Lingyu Fei, Ziying Hou, Yuan Wang, Jikang Sun, Tingting An, Qiuyun Li\",\"doi\":\"10.1007/s12298-025-01552-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The slow growth rate of <i>Zanthoxylum dissitum</i> Hemsl. (Zanthoxylum) is the important factor causing the scarcity of its available wild resource. It has been reported that the plant endophytes can promote the plant growth and the synthesis of secondary metabolitesby by enhancing the efficiency of nutrient absorption by plants and regulating plant hormones. It is important to explore the promoting effects of endophytes on the growth of Zanthoxylum. The application of high-throughput sequencing technology in this study revealed the presence of three phyla, five classes, seven orders, and eleven genera of endophytic bacteria in Zanthoxylum. The most prevalent phyla, classes, orders, and genera were identified respectively as Proteobacteria, Gammaproteobacteria, Burkholderiales, and Pseudomonas. In this study, an endophytic growth-promoting bacterium was isolated and identified as <i>Sphingomonas</i> sp. The results revealed that the bacterium exhibited robust nitrogen fixation, phosphorus solubilization, and effective siderophore production capabilities. The phosphate solubilization index (SI) was found to be (1.266 ± 0.0157). Following a 48-h incubation period in an inorganic phosphorus liquid medium (PKO), the concentration of auxin (IAA) and gibberellin (GA) reached their highest levels, at (138.145 ± 65.111) μg/mL and (805.74 ± 123.86) μg/mL, respectively. Moreover, the study showed that the endophytic bacteria markedly enhanced the germination potential and rate of sorghum seeds, and promoted significantly the growth of the tissue culture seedlings of Zanthoxylum.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 2\",\"pages\":\"299-310\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01552-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01552-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

花椒生长缓慢的原因。花椒(Zanthoxylum)是造成其可利用野生资源稀缺的重要因素。据报道,植物内生菌通过提高植物对养分的吸收效率和调节植物激素,促进植物生长和次生代谢产物的合成。探讨内生菌对花椒生长的促进作用具有重要意义。本研究应用高通量测序技术,发现花椒属内生细菌共3门5纲7目11属。最常见的门、纲、目和属分别为变形菌门(Proteobacteria)、γ变形菌门(Gammaproteobacteria)、伯克氏菌门(burkholderales)和假单胞菌门(Pseudomonas)。本研究分离并鉴定了一种促生长内生细菌鞘氨单胞菌(Sphingomonas sp.)。结果表明,该细菌具有强大的固氮、增磷和有效的铁载体生产能力。磷酸盐增溶指数(SI)为(1.266±0.0157)。在无机磷液体培养基(PKO)中培养48 h后,生长素(IAA)和赤霉素(GA)浓度达到最高,分别为(138.145±65.111)μg/mL和(805.74±123.86)μg/mL。此外,研究表明,内生细菌显著提高了高粱种子的萌发势和发芽率,并显著促进了花椒组培苗的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation and evaluation of growth-promoting endophytic bacteria from Zanthoxylum dissitum Hemsl.

The slow growth rate of Zanthoxylum dissitum Hemsl. (Zanthoxylum) is the important factor causing the scarcity of its available wild resource. It has been reported that the plant endophytes can promote the plant growth and the synthesis of secondary metabolitesby by enhancing the efficiency of nutrient absorption by plants and regulating plant hormones. It is important to explore the promoting effects of endophytes on the growth of Zanthoxylum. The application of high-throughput sequencing technology in this study revealed the presence of three phyla, five classes, seven orders, and eleven genera of endophytic bacteria in Zanthoxylum. The most prevalent phyla, classes, orders, and genera were identified respectively as Proteobacteria, Gammaproteobacteria, Burkholderiales, and Pseudomonas. In this study, an endophytic growth-promoting bacterium was isolated and identified as Sphingomonas sp. The results revealed that the bacterium exhibited robust nitrogen fixation, phosphorus solubilization, and effective siderophore production capabilities. The phosphate solubilization index (SI) was found to be (1.266 ± 0.0157). Following a 48-h incubation period in an inorganic phosphorus liquid medium (PKO), the concentration of auxin (IAA) and gibberellin (GA) reached their highest levels, at (138.145 ± 65.111) μg/mL and (805.74 ± 123.86) μg/mL, respectively. Moreover, the study showed that the endophytic bacteria markedly enhanced the germination potential and rate of sorghum seeds, and promoted significantly the growth of the tissue culture seedlings of Zanthoxylum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信