高入射功率下锗硅光电探测器的频率响应特性。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-03-05 DOI:10.3390/nano15050398
Jin Jiang, Hongmin Chen, Fenghe Yang, Chunlai Li, Jin He, Xiumei Wang, Jishi Cui
{"title":"高入射功率下锗硅光电探测器的频率响应特性。","authors":"Jin Jiang, Hongmin Chen, Fenghe Yang, Chunlai Li, Jin He, Xiumei Wang, Jishi Cui","doi":"10.3390/nano15050398","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the mechanisms responsible for the bandwidth reduction observed in germanium photodetectors under high signal light power. We investigate the impact of the carrier-shielding effect on the bandwidth through simulations, and we mitigate this effect by increasing the applied bias voltage. The increase in the concentration of photogenerated carriers leads to a reduction in the carrier saturation drift velocity, which reduces the bandwidth of the germanium photodetector; this phenomenon is studied for the first time. The bandwidth is determined primarily by the carrier saturation drift velocity when the incident light power is below 2.5 mW. The decrease in bandwidth that is calculated based on the decrease in carrier saturation drift velocity is consistent with the experimental results. However, when the signal light power exceeds 3 mW, both the carrier-shielding effect and the reduction in the carrier saturation drift velocity contribute to the bandwidth reduction. This study provides good theoretical guidance for the design of high-power germanium photodetectors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902112/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Frequency Response Characteristics of Ge-on-Si Photodetectors Under High Incident Power.\",\"authors\":\"Jin Jiang, Hongmin Chen, Fenghe Yang, Chunlai Li, Jin He, Xiumei Wang, Jishi Cui\",\"doi\":\"10.3390/nano15050398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the mechanisms responsible for the bandwidth reduction observed in germanium photodetectors under high signal light power. We investigate the impact of the carrier-shielding effect on the bandwidth through simulations, and we mitigate this effect by increasing the applied bias voltage. The increase in the concentration of photogenerated carriers leads to a reduction in the carrier saturation drift velocity, which reduces the bandwidth of the germanium photodetector; this phenomenon is studied for the first time. The bandwidth is determined primarily by the carrier saturation drift velocity when the incident light power is below 2.5 mW. The decrease in bandwidth that is calculated based on the decrease in carrier saturation drift velocity is consistent with the experimental results. However, when the signal light power exceeds 3 mW, both the carrier-shielding effect and the reduction in the carrier saturation drift velocity contribute to the bandwidth reduction. This study provides good theoretical guidance for the design of high-power germanium photodetectors.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15050398\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050398","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了高信号光功率下锗光电探测器带宽减小的机理。我们通过模拟研究了载波屏蔽效应对带宽的影响,并通过增加施加的偏置电压来减轻这种影响。光生载流子浓度的增加导致载流子饱和漂移速度的降低,从而降低了锗光电探测器的带宽;这是首次对这一现象进行研究。当入射光功率低于2.5 mW时,带宽主要由载流子饱和漂移速度决定。根据载波饱和漂移速度的减小计算出的带宽减小量与实验结果一致。然而,当信号光功率超过3 mW时,载波屏蔽效应和载波饱和漂移速度的降低都导致了带宽的降低。本研究为大功率锗光电探测器的设计提供了良好的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Frequency Response Characteristics of Ge-on-Si Photodetectors Under High Incident Power.

This study explores the mechanisms responsible for the bandwidth reduction observed in germanium photodetectors under high signal light power. We investigate the impact of the carrier-shielding effect on the bandwidth through simulations, and we mitigate this effect by increasing the applied bias voltage. The increase in the concentration of photogenerated carriers leads to a reduction in the carrier saturation drift velocity, which reduces the bandwidth of the germanium photodetector; this phenomenon is studied for the first time. The bandwidth is determined primarily by the carrier saturation drift velocity when the incident light power is below 2.5 mW. The decrease in bandwidth that is calculated based on the decrease in carrier saturation drift velocity is consistent with the experimental results. However, when the signal light power exceeds 3 mW, both the carrier-shielding effect and the reduction in the carrier saturation drift velocity contribute to the bandwidth reduction. This study provides good theoretical guidance for the design of high-power germanium photodetectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信