强度调制对超快激光烧蚀效率和熔融二氧化硅缺陷形成的影响。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-02-28 DOI:10.3390/nano15050377
Dai Yoshitomi, Hideyuki Takada, Shinichi Kinugasa, Hiroshi Ogawa, Yohei Kobayashi, Aiko Narazaki
{"title":"强度调制对超快激光烧蚀效率和熔融二氧化硅缺陷形成的影响。","authors":"Dai Yoshitomi, Hideyuki Takada, Shinichi Kinugasa, Hiroshi Ogawa, Yohei Kobayashi, Aiko Narazaki","doi":"10.3390/nano15050377","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp. This effect was independent of the repetition rate ranging from 100 Hz to 1 MHz, which suggested that it originates from persistent residual effects of preceding pulses. Photoluminescence experiments indicated that the observed effect is primarily attributed to the dynamic reduction in the ablation threshold caused by the formation of defects such as non-bridging oxygen hole centers. The correlation between the sequence of intensity-modulated pulses and defect formation has been clarified. The knowledge of these correlations, combined with machine learning-based optimization methods, is useful for the optimization of the throughput and quality of ultrafast laser processing.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901963/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intensity Modulation Effects on Ultrafast Laser Ablation Efficiency and Defect Formation in Fused Silica.\",\"authors\":\"Dai Yoshitomi, Hideyuki Takada, Shinichi Kinugasa, Hiroshi Ogawa, Yohei Kobayashi, Aiko Narazaki\",\"doi\":\"10.3390/nano15050377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp. This effect was independent of the repetition rate ranging from 100 Hz to 1 MHz, which suggested that it originates from persistent residual effects of preceding pulses. Photoluminescence experiments indicated that the observed effect is primarily attributed to the dynamic reduction in the ablation threshold caused by the formation of defects such as non-bridging oxygen hole centers. The correlation between the sequence of intensity-modulated pulses and defect formation has been clarified. The knowledge of these correlations, combined with machine learning-based optimization methods, is useful for the optimization of the throughput and quality of ultrafast laser processing.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901963/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15050377\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050377","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超快激光加工因其能够最大限度地减少热影响区而成为微纳米加工的关键技术。研究了脉冲强度变化对熔融二氧化硅超快激光烧蚀的影响,以获得脉冲强度动态调制的基本见解。本研究显示,与上行斜坡相比,下行斜坡强度调制显著提高了消融效率。这种效应与100 Hz至1 MHz的重复频率无关,这表明它源于前脉冲的持续残余效应。光致发光实验表明,所观察到的效果主要是由于非桥接氧孔中心等缺陷的形成导致烧蚀阈值的动态降低。阐明了强度调制脉冲序列与缺陷形成之间的关系。这些相关性的知识,结合基于机器学习的优化方法,对于超快激光加工的吞吐量和质量的优化是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intensity Modulation Effects on Ultrafast Laser Ablation Efficiency and Defect Formation in Fused Silica.

Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp. This effect was independent of the repetition rate ranging from 100 Hz to 1 MHz, which suggested that it originates from persistent residual effects of preceding pulses. Photoluminescence experiments indicated that the observed effect is primarily attributed to the dynamic reduction in the ablation threshold caused by the formation of defects such as non-bridging oxygen hole centers. The correlation between the sequence of intensity-modulated pulses and defect formation has been clarified. The knowledge of these correlations, combined with machine learning-based optimization methods, is useful for the optimization of the throughput and quality of ultrafast laser processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信