{"title":"电解水和氯基消毒剂的抗菌功效:pH值、游离氯和氧化还原电位随时间的作用。","authors":"Angelica Luevanos-Aguilera","doi":"10.1089/mdr.2024.0213","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the antimicrobial efficacy of electrolyzed water (EW) and chlorine-based disinfectant (CLD) over time, focusing on the impact of pH, free chlorine (FCL), and oxidation-reduction potential (ORP). EW and CLD are commonly used for wound care and surgical instrument disinfection, but their chemical instability limits their use. The study was conducted in the Microbiology Laboratory of the University of Guanajuato, using <i>Escherichia coli</i> ATCC 25922 as the test organism. Disinfectants were maintained at 40°C, with systematic monitoring of pH, FCL, and ORP. Minimum bactericidal concentration was used to assess antimicrobial activity before and after thermal exposure. Statistical analyses included Kruskal-Wallis one-way ANOVA, and the Friedman test. Results showed that the antimicrobial activity of EW depended on FCL concentration, with a significant correlation between the absence of FCL and increased minimum bactericidal concentration (<i>p</i> < 0.01). Disinfectants with alkaline pH demonstrated greater stability over time (<i>p</i> < 0.01). The findings highlight the importance of FCL, pH, and ORP in the effectiveness of these disinfectants and underscore their limitations due to chemical instability in clinical settings.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"80-86"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Efficacy of Electrolyzed Waters and Chlorine-Based Disinfectants: The Role of pH, Free Chlorine, and Oxidation-Reduction Potential Over Time.\",\"authors\":\"Angelica Luevanos-Aguilera\",\"doi\":\"10.1089/mdr.2024.0213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the antimicrobial efficacy of electrolyzed water (EW) and chlorine-based disinfectant (CLD) over time, focusing on the impact of pH, free chlorine (FCL), and oxidation-reduction potential (ORP). EW and CLD are commonly used for wound care and surgical instrument disinfection, but their chemical instability limits their use. The study was conducted in the Microbiology Laboratory of the University of Guanajuato, using <i>Escherichia coli</i> ATCC 25922 as the test organism. Disinfectants were maintained at 40°C, with systematic monitoring of pH, FCL, and ORP. Minimum bactericidal concentration was used to assess antimicrobial activity before and after thermal exposure. Statistical analyses included Kruskal-Wallis one-way ANOVA, and the Friedman test. Results showed that the antimicrobial activity of EW depended on FCL concentration, with a significant correlation between the absence of FCL and increased minimum bactericidal concentration (<i>p</i> < 0.01). Disinfectants with alkaline pH demonstrated greater stability over time (<i>p</i> < 0.01). The findings highlight the importance of FCL, pH, and ORP in the effectiveness of these disinfectants and underscore their limitations due to chemical instability in clinical settings.</p>\",\"PeriodicalId\":18701,\"journal\":{\"name\":\"Microbial drug resistance\",\"volume\":\" \",\"pages\":\"80-86\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial drug resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/mdr.2024.0213\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2024.0213","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Antimicrobial Efficacy of Electrolyzed Waters and Chlorine-Based Disinfectants: The Role of pH, Free Chlorine, and Oxidation-Reduction Potential Over Time.
This study evaluated the antimicrobial efficacy of electrolyzed water (EW) and chlorine-based disinfectant (CLD) over time, focusing on the impact of pH, free chlorine (FCL), and oxidation-reduction potential (ORP). EW and CLD are commonly used for wound care and surgical instrument disinfection, but their chemical instability limits their use. The study was conducted in the Microbiology Laboratory of the University of Guanajuato, using Escherichia coli ATCC 25922 as the test organism. Disinfectants were maintained at 40°C, with systematic monitoring of pH, FCL, and ORP. Minimum bactericidal concentration was used to assess antimicrobial activity before and after thermal exposure. Statistical analyses included Kruskal-Wallis one-way ANOVA, and the Friedman test. Results showed that the antimicrobial activity of EW depended on FCL concentration, with a significant correlation between the absence of FCL and increased minimum bactericidal concentration (p < 0.01). Disinfectants with alkaline pH demonstrated greater stability over time (p < 0.01). The findings highlight the importance of FCL, pH, and ORP in the effectiveness of these disinfectants and underscore their limitations due to chemical instability in clinical settings.
期刊介绍:
Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports.
MDR coverage includes:
Molecular biology of resistance mechanisms
Virulence genes and disease
Molecular epidemiology
Drug design
Infection control.