卤化物钙钛矿离子交换研究进展。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-02-28 DOI:10.3390/nano15050375
Chao Du, Kaiwang Chen, Jiangshan Chen, Dongge Ma
{"title":"卤化物钙钛矿离子交换研究进展。","authors":"Chao Du, Kaiwang Chen, Jiangshan Chen, Dongge Ma","doi":"10.3390/nano15050375","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, halide perovskite materials have been extensively studied by researchers due to their excellent optoelectronic characteristics. Unlike traditional semiconductors, halide perovskites possess unique ionic crystal structures, which makes it easier to perform facile composition engineering to tailor their physical and chemical properties. Ion exchange is a popular post-treatment strategy to achieve composition engineering in perovskites, and various ion exchange processes have been used to modify the structural and functional features of prefabricated perovskites to meet the requirements of desired applications. This review summarizes the recent progress in ion exchange of halide perovskites, including mechanisms, strategies, and studies on different ion exchange. Additionally, the applications of ion-exchanged perovskites in microfluidic sensors, light-emitting diodes (LEDs), lasers, and solar cells are presented. Lastly, we briefly discuss the challenges in ion exchange of perovskites and hope that ion exchange can provide a more refined and reliable method for the preparation of high-performance perovskites.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901563/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research Advances in Ion Exchange of Halide Perovskites.\",\"authors\":\"Chao Du, Kaiwang Chen, Jiangshan Chen, Dongge Ma\",\"doi\":\"10.3390/nano15050375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, halide perovskite materials have been extensively studied by researchers due to their excellent optoelectronic characteristics. Unlike traditional semiconductors, halide perovskites possess unique ionic crystal structures, which makes it easier to perform facile composition engineering to tailor their physical and chemical properties. Ion exchange is a popular post-treatment strategy to achieve composition engineering in perovskites, and various ion exchange processes have been used to modify the structural and functional features of prefabricated perovskites to meet the requirements of desired applications. This review summarizes the recent progress in ion exchange of halide perovskites, including mechanisms, strategies, and studies on different ion exchange. Additionally, the applications of ion-exchanged perovskites in microfluidic sensors, light-emitting diodes (LEDs), lasers, and solar cells are presented. Lastly, we briefly discuss the challenges in ion exchange of perovskites and hope that ion exchange can provide a more refined and reliable method for the preparation of high-performance perovskites.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901563/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15050375\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15050375","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,卤化物钙钛矿材料因其优异的光电特性而受到研究者的广泛研究。与传统半导体不同,卤化物钙钛矿具有独特的离子晶体结构,这使得它更容易进行简单的成分工程来调整其物理和化学性质。离子交换是实现钙钛矿成分工程的一种常用后处理策略,各种离子交换工艺已被用于修改预制钙钛矿的结构和功能特征,以满足所需的应用要求。本文综述了近年来卤化物钙钛矿离子交换的研究进展,包括卤化物钙钛矿离子交换的机理、策略以及不同离子交换方法的研究。此外,还介绍了离子交换钙钛矿在微流体传感器、发光二极管(led)、激光器和太阳能电池中的应用。最后,简要讨论了钙钛矿离子交换技术面临的挑战,希望离子交换技术能够为高性能钙钛矿的制备提供更加精细可靠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research Advances in Ion Exchange of Halide Perovskites.

In recent years, halide perovskite materials have been extensively studied by researchers due to their excellent optoelectronic characteristics. Unlike traditional semiconductors, halide perovskites possess unique ionic crystal structures, which makes it easier to perform facile composition engineering to tailor their physical and chemical properties. Ion exchange is a popular post-treatment strategy to achieve composition engineering in perovskites, and various ion exchange processes have been used to modify the structural and functional features of prefabricated perovskites to meet the requirements of desired applications. This review summarizes the recent progress in ion exchange of halide perovskites, including mechanisms, strategies, and studies on different ion exchange. Additionally, the applications of ion-exchanged perovskites in microfluidic sensors, light-emitting diodes (LEDs), lasers, and solar cells are presented. Lastly, we briefly discuss the challenges in ion exchange of perovskites and hope that ion exchange can provide a more refined and reliable method for the preparation of high-performance perovskites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信