核小体和高阶结构中的静电相互作用是由组蛋白电离残基的质子化状态调控的。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Houfang Zhang, Wenhan Guo, Wang Xu, Anbang Li, Lijun Jiang, Lin Li, Yunhui Peng
{"title":"核小体和高阶结构中的静电相互作用是由组蛋白电离残基的质子化状态调控的。","authors":"Houfang Zhang, Wenhan Guo, Wang Xu, Anbang Li, Lijun Jiang, Lin Li, Yunhui Peng","doi":"10.1063/5.0252788","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleosome serves as the fundamental unit of chromatin organization, with electrostatic interactions acting as the driving forces in the folding of nucleosomes into chromatin. Perturbations around physiological pH conditions can lead to changes in the protonation states of titratable histone residues, impacting nucleosome surface electrostatic potentials and interactions. However, the effects of proton uptake or release of histone ionizable groups on nucleosome-partner protein interactions and higher-order chromatin structures remain largely unexplored. Here, we conducted comprehensive analyses of histone titratable residue pKa values in various nucleosome contexts, utilizing 96 experimentally determined complex structures. We revealed that pH-induced changes in histone residue protonation states modulated nucleosome surface electrostatic potentials and significantly influenced nucleosome-partner protein interactions. Furthermore, we observed that proton uptake or release often accompanied nucleosome-partner protein interactions, facilitating their binding processes. In addition, our findings suggest that alterations in histone protonation can also regulate nucleosome self-association, thereby modulating the organization and dynamics of higher-order chromatin structure. This study advances our understanding of nucleosome-chromatin factor interactions and how chromatin organization is regulated at the molecular level.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrostatic interactions in nucleosome and higher-order structures are regulated by protonation state of histone ionizable residue.\",\"authors\":\"Houfang Zhang, Wenhan Guo, Wang Xu, Anbang Li, Lijun Jiang, Lin Li, Yunhui Peng\",\"doi\":\"10.1063/5.0252788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nucleosome serves as the fundamental unit of chromatin organization, with electrostatic interactions acting as the driving forces in the folding of nucleosomes into chromatin. Perturbations around physiological pH conditions can lead to changes in the protonation states of titratable histone residues, impacting nucleosome surface electrostatic potentials and interactions. However, the effects of proton uptake or release of histone ionizable groups on nucleosome-partner protein interactions and higher-order chromatin structures remain largely unexplored. Here, we conducted comprehensive analyses of histone titratable residue pKa values in various nucleosome contexts, utilizing 96 experimentally determined complex structures. We revealed that pH-induced changes in histone residue protonation states modulated nucleosome surface electrostatic potentials and significantly influenced nucleosome-partner protein interactions. Furthermore, we observed that proton uptake or release often accompanied nucleosome-partner protein interactions, facilitating their binding processes. In addition, our findings suggest that alterations in histone protonation can also regulate nucleosome self-association, thereby modulating the organization and dynamics of higher-order chromatin structure. This study advances our understanding of nucleosome-chromatin factor interactions and how chromatin organization is regulated at the molecular level.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 10\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0252788\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0252788","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

核小体是染色质组织的基本单位,静电相互作用是核小体折叠成染色质的驱动力。生理pH条件的扰动可导致可滴定组蛋白残基质子化状态的变化,影响核小体表面静电电位和相互作用。然而,质子摄取或释放组蛋白电离基团对核小体-伴侣蛋白相互作用和高阶染色质结构的影响在很大程度上仍未被探索。在这里,我们利用96个实验确定的复杂结构,对不同核小体背景下的组蛋白可滴定残基pKa值进行了全面分析。我们发现ph诱导的组蛋白残基质子化状态的变化可调节核小体表面静电电位,并显著影响核小体与伴侣蛋白的相互作用。此外,我们观察到质子的摄取或释放通常伴随着核小体-伴侣蛋白的相互作用,促进了它们的结合过程。此外,我们的研究结果表明,组蛋白质子化的改变也可以调节核小体的自结合,从而调节高阶染色质结构的组织和动态。这项研究促进了我们对核小体-染色质因子相互作用以及染色质组织如何在分子水平上受到调节的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrostatic interactions in nucleosome and higher-order structures are regulated by protonation state of histone ionizable residue.

The nucleosome serves as the fundamental unit of chromatin organization, with electrostatic interactions acting as the driving forces in the folding of nucleosomes into chromatin. Perturbations around physiological pH conditions can lead to changes in the protonation states of titratable histone residues, impacting nucleosome surface electrostatic potentials and interactions. However, the effects of proton uptake or release of histone ionizable groups on nucleosome-partner protein interactions and higher-order chromatin structures remain largely unexplored. Here, we conducted comprehensive analyses of histone titratable residue pKa values in various nucleosome contexts, utilizing 96 experimentally determined complex structures. We revealed that pH-induced changes in histone residue protonation states modulated nucleosome surface electrostatic potentials and significantly influenced nucleosome-partner protein interactions. Furthermore, we observed that proton uptake or release often accompanied nucleosome-partner protein interactions, facilitating their binding processes. In addition, our findings suggest that alterations in histone protonation can also regulate nucleosome self-association, thereby modulating the organization and dynamics of higher-order chromatin structure. This study advances our understanding of nucleosome-chromatin factor interactions and how chromatin organization is regulated at the molecular level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信