电子分离、附着和激发问题的相对论三阶代数图解构造理论。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Sudipta Chakraborty, Tamoghna Mukhopadhyay, Malaya K Nayak, Achintya Kumar Dutta
{"title":"电子分离、附着和激发问题的相对论三阶代数图解构造理论。","authors":"Sudipta Chakraborty, Tamoghna Mukhopadhyay, Malaya K Nayak, Achintya Kumar Dutta","doi":"10.1063/5.0246920","DOIUrl":null,"url":null,"abstract":"<p><p>We present the theory and implementation of a relativistic third-order algebraic diagrammatic construction [ADC(3)] method based on a four-component (4c) Dirac-Coulomb Hamiltonian for the calculation of ionization potentials (IPs), electron affinities (EAs), and excitation energies (EEs). Benchmarking calculations for IP, EA, and EE were performed on both atomic and molecular systems to assess the accuracy of the newly developed four-component relativistic ADC(3) method. The results show good agreement with the available experimental data. The Hermitian nature of the 4c-ADC(3) Hamiltonian, combined with the perturbative truncation of the wave function, offers significant computational advantages over the standard equation-of-motion coupled-cluster approach, particularly for property calculations. The method's suitability for property calculations is further demonstrated by computing oscillator strengths and excited-state dipole moments for heavy elements.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A relativistic third-order algebraic diagrammatic construction theory for electron detachment, attachment, and excitation problems.\",\"authors\":\"Sudipta Chakraborty, Tamoghna Mukhopadhyay, Malaya K Nayak, Achintya Kumar Dutta\",\"doi\":\"10.1063/5.0246920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present the theory and implementation of a relativistic third-order algebraic diagrammatic construction [ADC(3)] method based on a four-component (4c) Dirac-Coulomb Hamiltonian for the calculation of ionization potentials (IPs), electron affinities (EAs), and excitation energies (EEs). Benchmarking calculations for IP, EA, and EE were performed on both atomic and molecular systems to assess the accuracy of the newly developed four-component relativistic ADC(3) method. The results show good agreement with the available experimental data. The Hermitian nature of the 4c-ADC(3) Hamiltonian, combined with the perturbative truncation of the wave function, offers significant computational advantages over the standard equation-of-motion coupled-cluster approach, particularly for property calculations. The method's suitability for property calculations is further demonstrated by computing oscillator strengths and excited-state dipole moments for heavy elements.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 10\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0246920\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0246920","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于四分量(4c)狄拉克-库仑哈密顿量的相对论三阶代数图解构造[ADC(3)]方法的理论和实现,用于计算电离势(IPs)、电子亲和力(ea)和激发能(EEs)。在原子和分子体系上进行了IP、EA和EE的基准计算,以评估新开发的四组分相对论ADC(3)方法的准确性。计算结果与现有实验数据吻合较好。4c-ADC(3)哈密顿量的厄米性质与波函数的微扰截断相结合,提供了比标准运动方程耦合簇方法显著的计算优势,特别是对于性质计算。通过计算重元素的振子强度和激发态偶极矩,进一步证明了该方法对性质计算的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A relativistic third-order algebraic diagrammatic construction theory for electron detachment, attachment, and excitation problems.

We present the theory and implementation of a relativistic third-order algebraic diagrammatic construction [ADC(3)] method based on a four-component (4c) Dirac-Coulomb Hamiltonian for the calculation of ionization potentials (IPs), electron affinities (EAs), and excitation energies (EEs). Benchmarking calculations for IP, EA, and EE were performed on both atomic and molecular systems to assess the accuracy of the newly developed four-component relativistic ADC(3) method. The results show good agreement with the available experimental data. The Hermitian nature of the 4c-ADC(3) Hamiltonian, combined with the perturbative truncation of the wave function, offers significant computational advantages over the standard equation-of-motion coupled-cluster approach, particularly for property calculations. The method's suitability for property calculations is further demonstrated by computing oscillator strengths and excited-state dipole moments for heavy elements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信