微管变形通过运动蛋白调节细胞内运输与动力蛋白不同。

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Syeda Rubaiya Nasrin;Tanjina Afrin;Arif Md. Rashedul Kabir;Daisuke Inoue;Takefumi Yamashita;Makoto Oura;Johtaro Yamamoto;Masataka Kinjo;Kazuki Sada;Akira Kakugo
{"title":"微管变形通过运动蛋白调节细胞内运输与动力蛋白不同。","authors":"Syeda Rubaiya Nasrin;Tanjina Afrin;Arif Md. Rashedul Kabir;Daisuke Inoue;Takefumi Yamashita;Makoto Oura;Johtaro Yamamoto;Masataka Kinjo;Kazuki Sada;Akira Kakugo","doi":"10.1109/TNB.2024.3507021","DOIUrl":null,"url":null,"abstract":"Mechanical stress on cells is transmitted through many biological processes, for example, cell shape control, tissue patterning, and axonal homeostasis. Microtubules, a cytoskeletal component, presumably play a significant role in the mechanoregulation of cellular processes. We investigate motor protein-driven transport of quantum dots along mechanically deformed microtubules. We found that microtubule deformation significantly slowed kinesin-driven transport, whereas we previously reported dynein-driven transport was rather robust. Such dualistic modulation of transportation dynamics of the motor proteins by microtubule deformation can be attributed to the altered affinity of the motor proteins for buckled microtubules. Our results may form the basis for understanding microtubules’ role in regulating cellular processes in a mechanically adverse environment through its detection ability and response to mechanical stress.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"218-224"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microtubule Deformation Modulates Intracellular Transport by Kinesin Differently Than Dynein\",\"authors\":\"Syeda Rubaiya Nasrin;Tanjina Afrin;Arif Md. Rashedul Kabir;Daisuke Inoue;Takefumi Yamashita;Makoto Oura;Johtaro Yamamoto;Masataka Kinjo;Kazuki Sada;Akira Kakugo\",\"doi\":\"10.1109/TNB.2024.3507021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical stress on cells is transmitted through many biological processes, for example, cell shape control, tissue patterning, and axonal homeostasis. Microtubules, a cytoskeletal component, presumably play a significant role in the mechanoregulation of cellular processes. We investigate motor protein-driven transport of quantum dots along mechanically deformed microtubules. We found that microtubule deformation significantly slowed kinesin-driven transport, whereas we previously reported dynein-driven transport was rather robust. Such dualistic modulation of transportation dynamics of the motor proteins by microtubule deformation can be attributed to the altered affinity of the motor proteins for buckled microtubules. Our results may form the basis for understanding microtubules’ role in regulating cellular processes in a mechanically adverse environment through its detection ability and response to mechanical stress.\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"24 2\",\"pages\":\"218-224\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10769569/\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10769569/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

细胞上的机械应力通过许多生物过程传递,例如细胞形状控制、组织模式和轴突稳态。微管是细胞骨架的组成部分,可能在细胞过程的机械调节中起着重要作用。我们研究了运动蛋白驱动量子点沿机械变形微管的运输。我们发现微管变形显著减缓了动力蛋白驱动的运输,而我们之前报道的动力蛋白驱动的运输是相当稳健的。微管变形对运动蛋白运输动力学的双重调节可归因于运动蛋白对屈曲微管的亲和力改变。我们的研究结果可以通过微管的检测能力和对机械应力的响应,为理解微管在机械不利环境中调节细胞过程中的作用奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microtubule Deformation Modulates Intracellular Transport by Kinesin Differently Than Dynein
Mechanical stress on cells is transmitted through many biological processes, for example, cell shape control, tissue patterning, and axonal homeostasis. Microtubules, a cytoskeletal component, presumably play a significant role in the mechanoregulation of cellular processes. We investigate motor protein-driven transport of quantum dots along mechanically deformed microtubules. We found that microtubule deformation significantly slowed kinesin-driven transport, whereas we previously reported dynein-driven transport was rather robust. Such dualistic modulation of transportation dynamics of the motor proteins by microtubule deformation can be attributed to the altered affinity of the motor proteins for buckled microtubules. Our results may form the basis for understanding microtubules’ role in regulating cellular processes in a mechanically adverse environment through its detection ability and response to mechanical stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信