Sirt3通过SOD2去乙酰化拯救牙龈卟啉单胞菌受损的骨质形成。

IF 5.9 1区 生物学 Q2 CELL BIOLOGY
Xin Huang, Huiqing Gou, Jirong Xie, Yonglin Guo, Yifei Deng, Yan Xu, Zhengguo Cao
{"title":"Sirt3通过SOD2去乙酰化拯救牙龈卟啉单胞菌受损的骨质形成。","authors":"Xin Huang, Huiqing Gou, Jirong Xie, Yonglin Guo, Yifei Deng, Yan Xu, Zhengguo Cao","doi":"10.1111/cpr.70022","DOIUrl":null,"url":null,"abstract":"<p><p>The keystone pathogen Porphyromonas gingivalis (P.g.) is responsible for cementum resorption in periodontitis; however, the mechanism involved in it remains unclear. Sirtuin 3 (Sirt3) is a NAD<sup>+</sup>-dependent protein deacetylase contributing to mitochondrial homeostasis and various cell functions. In this study, the expression of Sirt3 in cementoblasts was found to be increased during cementoblast mineralisation and cementum development, while it decreased gradually under P.g. infection in a multiplicity of infection-dependent manner. Compared with wild type mice, the Sirt3 knockout mice showed less cellular cementum and lower mineralisation capacity with decreased expression of Runx2 and OCN in cementoblasts. Sirt3 inhibition by 3-TYP or Sirt3 silencing by lentivirus infection both confirmed the impaired cementogenesis. Conversely, honokiol (HKL) was simulated to bind Sirt3 and was applied to activate Sirt3 in cementoblasts. HKL-mediated Sirt3 activation facilitated cementoblast mineralisation and rescued P.g.-suppressed cementoblast mineralisation markedly. Superoxide dismutase 2 (SOD2), the downstream molecule of Sirt3, showed a similar expression pattern to Sirt3 under different conditions. Silencing of SOD2 was demonstrated to restrain cementoblast mineralisation. The pan acetylation was detected to decrease under Sirt3-upregulating conditions and increase under Sirt3-downregulating conditions. The binding of Sirt3 and SOD2 in cementoblasts was also verified. Furthermore, SOD2 acetylation and specific SOD2-K68 acetylation were found to be upregulated under P.g. or Sirt3 silencing conditions and downregulated by HKL stimulation. Moreover, K68Q mutation simulating acetylation decreased cementoblast mineralisation, while K68R mutation simulating deacetylation increased it. Altogether, Sirt3 deacetylates SOD2 via K68 to orchestrate P.g.-perturbed cementogenesis, and HKL is a Sirt3-targeted treatment candidate.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70022"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sirt3 Rescues Porphyromonas gingivalis-Impaired Cementogenesis via SOD2 Deacetylation.\",\"authors\":\"Xin Huang, Huiqing Gou, Jirong Xie, Yonglin Guo, Yifei Deng, Yan Xu, Zhengguo Cao\",\"doi\":\"10.1111/cpr.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The keystone pathogen Porphyromonas gingivalis (P.g.) is responsible for cementum resorption in periodontitis; however, the mechanism involved in it remains unclear. Sirtuin 3 (Sirt3) is a NAD<sup>+</sup>-dependent protein deacetylase contributing to mitochondrial homeostasis and various cell functions. In this study, the expression of Sirt3 in cementoblasts was found to be increased during cementoblast mineralisation and cementum development, while it decreased gradually under P.g. infection in a multiplicity of infection-dependent manner. Compared with wild type mice, the Sirt3 knockout mice showed less cellular cementum and lower mineralisation capacity with decreased expression of Runx2 and OCN in cementoblasts. Sirt3 inhibition by 3-TYP or Sirt3 silencing by lentivirus infection both confirmed the impaired cementogenesis. Conversely, honokiol (HKL) was simulated to bind Sirt3 and was applied to activate Sirt3 in cementoblasts. HKL-mediated Sirt3 activation facilitated cementoblast mineralisation and rescued P.g.-suppressed cementoblast mineralisation markedly. Superoxide dismutase 2 (SOD2), the downstream molecule of Sirt3, showed a similar expression pattern to Sirt3 under different conditions. Silencing of SOD2 was demonstrated to restrain cementoblast mineralisation. The pan acetylation was detected to decrease under Sirt3-upregulating conditions and increase under Sirt3-downregulating conditions. The binding of Sirt3 and SOD2 in cementoblasts was also verified. Furthermore, SOD2 acetylation and specific SOD2-K68 acetylation were found to be upregulated under P.g. or Sirt3 silencing conditions and downregulated by HKL stimulation. Moreover, K68Q mutation simulating acetylation decreased cementoblast mineralisation, while K68R mutation simulating deacetylation increased it. Altogether, Sirt3 deacetylates SOD2 via K68 to orchestrate P.g.-perturbed cementogenesis, and HKL is a Sirt3-targeted treatment candidate.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70022\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70022\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70022","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

牙龈卟啉单胞菌(Porphyromonas gingivalis, p.g.)是牙周炎患者牙骨质吸收的主要病原体;然而,其中涉及的机制尚不清楚。Sirtuin 3 (Sirt3)是一种依赖NAD+的蛋白质去乙酰化酶,参与线粒体稳态和各种细胞功能。本研究发现,在成水泥细胞矿化和成水泥细胞发育过程中,Sirt3的表达增加,而在P.g.感染下,Sirt3的表达以多种感染依赖的方式逐渐下降。与野生型小鼠相比,Sirt3基因敲除小鼠骨水泥母细胞中Runx2和OCN的表达减少,骨水泥母细胞的骨质减少,矿化能力降低。3-TYP抑制Sirt3或慢病毒感染沉默Sirt3均证实了骨质形成受损。相反,本木酚(HKL)被模拟与Sirt3结合,并应用于激活成水泥细胞中的Sirt3。hkl介导的Sirt3激活促进了成水泥细胞矿化,并显著恢复了pg抑制的成水泥细胞矿化。Sirt3的下游分子超氧化物歧化酶2 (SOD2)在不同条件下的表达模式与Sirt3相似。SOD2的沉默被证明可以抑制水泥母细胞矿化。检测到泛乙酰化在sirt3上调条件下减少,在sirt3下调条件下增加。我们也证实了Sirt3和SOD2在成水泥细胞中的结合。此外,SOD2乙酰化和特异性SOD2- k68乙酰化被发现在P.g.或Sirt3沉默条件下上调,而在HKL刺激下下调。此外,模拟乙酰化的K68Q突变减少了水泥母细胞矿化,而模拟去乙酰化的K68R突变增加了水泥母细胞矿化。总之,Sirt3通过K68使SOD2去乙酰化,以协调pg干扰的骨质形成,而HKL是Sirt3靶向治疗的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sirt3 Rescues Porphyromonas gingivalis-Impaired Cementogenesis via SOD2 Deacetylation.

The keystone pathogen Porphyromonas gingivalis (P.g.) is responsible for cementum resorption in periodontitis; however, the mechanism involved in it remains unclear. Sirtuin 3 (Sirt3) is a NAD+-dependent protein deacetylase contributing to mitochondrial homeostasis and various cell functions. In this study, the expression of Sirt3 in cementoblasts was found to be increased during cementoblast mineralisation and cementum development, while it decreased gradually under P.g. infection in a multiplicity of infection-dependent manner. Compared with wild type mice, the Sirt3 knockout mice showed less cellular cementum and lower mineralisation capacity with decreased expression of Runx2 and OCN in cementoblasts. Sirt3 inhibition by 3-TYP or Sirt3 silencing by lentivirus infection both confirmed the impaired cementogenesis. Conversely, honokiol (HKL) was simulated to bind Sirt3 and was applied to activate Sirt3 in cementoblasts. HKL-mediated Sirt3 activation facilitated cementoblast mineralisation and rescued P.g.-suppressed cementoblast mineralisation markedly. Superoxide dismutase 2 (SOD2), the downstream molecule of Sirt3, showed a similar expression pattern to Sirt3 under different conditions. Silencing of SOD2 was demonstrated to restrain cementoblast mineralisation. The pan acetylation was detected to decrease under Sirt3-upregulating conditions and increase under Sirt3-downregulating conditions. The binding of Sirt3 and SOD2 in cementoblasts was also verified. Furthermore, SOD2 acetylation and specific SOD2-K68 acetylation were found to be upregulated under P.g. or Sirt3 silencing conditions and downregulated by HKL stimulation. Moreover, K68Q mutation simulating acetylation decreased cementoblast mineralisation, while K68R mutation simulating deacetylation increased it. Altogether, Sirt3 deacetylates SOD2 via K68 to orchestrate P.g.-perturbed cementogenesis, and HKL is a Sirt3-targeted treatment candidate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信