多组学揭示鸭的肠道-下丘脑通讯的急性应激易感性。

IF 1.6 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
T Gu, R Guo, L Chen, Y Zong, Y Tian, W Xu, T Zeng, L Lu
{"title":"多组学揭示鸭的肠道-下丘脑通讯的急性应激易感性。","authors":"T Gu, R Guo, L Chen, Y Zong, Y Tian, W Xu, T Zeng, L Lu","doi":"10.1080/00071668.2025.2454960","DOIUrl":null,"url":null,"abstract":"<p><p>1. The avian gut hosts a complex and dynamic microbial ecosystem, which is essential for regulating host organ function. However, the relationship between the gut microbiota and the hypothalamic axis in acute stress vulnerability in ducks remains unclear.2. This study investigated how the gut microbiota affects microbial metabolism and the host stress response by comparing hypothalamic neurotransmitter availability, microbial composition and co-metabolites generated by both the microbiota and hypothalamus in ducks exhibiting the lowest active avoidance (LAA) and highest active avoidance (HAA) behaviour.3. The HAA group experienced a significant increase in the availability of arginine, histidine, glutamine, norepinephrine, L-tyrosine and melatonin during acute stress in the hypothalamus, compared to that in the LAA group. The 16S rRNA sequencing revealed significant differences in the gut microbiota composition based on acute stress vulnerabilities.4. Both caecal and hypothalamic metabolomic analyses identified 71 metabolites altered in caecal content and 95 in the hypothalamus. There was significant enrichment in pathways such as the cGMP-PKG signalling, dopaminergic synapse and endocrine resistance.5. Correlation analyses demonstrated that certain co-metabolites, including 1,3-dicyclohexylurea, 1-deoxyvaleric acid, 2-amino-2-methyl-1,3-propanediol, 3-chloroaniline, methenamine, N4-acetylcytidine-triphosphate and traumatin, may play a role in the gut microbiota-hypothalamic axis.6. The results suggested that the gut microbiome influenced acute stress responses. This provided a basis for understanding gut-hypothalamic communication and its impact on behaviour in ducks.</p>","PeriodicalId":9322,"journal":{"name":"British Poultry Science","volume":" ","pages":"1-10"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omics uncover acute stress vulnerability through gut-hypothalamic communication in ducks.\",\"authors\":\"T Gu, R Guo, L Chen, Y Zong, Y Tian, W Xu, T Zeng, L Lu\",\"doi\":\"10.1080/00071668.2025.2454960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1. The avian gut hosts a complex and dynamic microbial ecosystem, which is essential for regulating host organ function. However, the relationship between the gut microbiota and the hypothalamic axis in acute stress vulnerability in ducks remains unclear.2. This study investigated how the gut microbiota affects microbial metabolism and the host stress response by comparing hypothalamic neurotransmitter availability, microbial composition and co-metabolites generated by both the microbiota and hypothalamus in ducks exhibiting the lowest active avoidance (LAA) and highest active avoidance (HAA) behaviour.3. The HAA group experienced a significant increase in the availability of arginine, histidine, glutamine, norepinephrine, L-tyrosine and melatonin during acute stress in the hypothalamus, compared to that in the LAA group. The 16S rRNA sequencing revealed significant differences in the gut microbiota composition based on acute stress vulnerabilities.4. Both caecal and hypothalamic metabolomic analyses identified 71 metabolites altered in caecal content and 95 in the hypothalamus. There was significant enrichment in pathways such as the cGMP-PKG signalling, dopaminergic synapse and endocrine resistance.5. Correlation analyses demonstrated that certain co-metabolites, including 1,3-dicyclohexylurea, 1-deoxyvaleric acid, 2-amino-2-methyl-1,3-propanediol, 3-chloroaniline, methenamine, N4-acetylcytidine-triphosphate and traumatin, may play a role in the gut microbiota-hypothalamic axis.6. The results suggested that the gut microbiome influenced acute stress responses. This provided a basis for understanding gut-hypothalamic communication and its impact on behaviour in ducks.</p>\",\"PeriodicalId\":9322,\"journal\":{\"name\":\"British Poultry Science\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/00071668.2025.2454960\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00071668.2025.2454960","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

1. 禽肠道是一个复杂而动态的微生物生态系统,对调节宿主器官功能至关重要。然而,鸭急性应激易感性中肠道微生物群与下丘脑轴之间的关系尚不清楚。本研究通过比较表现出最低主动回避(LAA)和最高主动回避(HAA)行为的鸭子的下丘脑神经递质利用率、微生物组成和微生物群和下丘脑产生的共同代谢物,研究了肠道微生物群如何影响微生物代谢和宿主应激反应。与LAA组相比,HAA组在急性应激下下丘脑的精氨酸、组氨酸、谷氨酰胺、去甲肾上腺素、l -酪氨酸和褪黑素的可用性显著增加。16S rRNA测序显示,急性应激易感性的肠道菌群组成存在显著差异。盲肠和下丘脑代谢组学分析发现盲肠含量改变了71种代谢物,下丘脑改变了95种代谢物。cGMP-PKG信号通路、多巴胺能突触和内分泌抵抗等通路显著富集。相关分析表明,某些共同代谢产物,包括1,3-双环己基脲、1-脱氧戊酸、2-氨基-2-甲基-1,3-丙二醇、3-氯苯胺、甲基苯胺、n4 -乙酰胞苷-三磷酸和创伤素,可能在肠道微生物群-下丘脑轴中发挥作用。结果表明,肠道微生物组影响急性应激反应。这为理解鸭的肠道-下丘脑沟通及其对行为的影响提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-omics uncover acute stress vulnerability through gut-hypothalamic communication in ducks.

1. The avian gut hosts a complex and dynamic microbial ecosystem, which is essential for regulating host organ function. However, the relationship between the gut microbiota and the hypothalamic axis in acute stress vulnerability in ducks remains unclear.2. This study investigated how the gut microbiota affects microbial metabolism and the host stress response by comparing hypothalamic neurotransmitter availability, microbial composition and co-metabolites generated by both the microbiota and hypothalamus in ducks exhibiting the lowest active avoidance (LAA) and highest active avoidance (HAA) behaviour.3. The HAA group experienced a significant increase in the availability of arginine, histidine, glutamine, norepinephrine, L-tyrosine and melatonin during acute stress in the hypothalamus, compared to that in the LAA group. The 16S rRNA sequencing revealed significant differences in the gut microbiota composition based on acute stress vulnerabilities.4. Both caecal and hypothalamic metabolomic analyses identified 71 metabolites altered in caecal content and 95 in the hypothalamus. There was significant enrichment in pathways such as the cGMP-PKG signalling, dopaminergic synapse and endocrine resistance.5. Correlation analyses demonstrated that certain co-metabolites, including 1,3-dicyclohexylurea, 1-deoxyvaleric acid, 2-amino-2-methyl-1,3-propanediol, 3-chloroaniline, methenamine, N4-acetylcytidine-triphosphate and traumatin, may play a role in the gut microbiota-hypothalamic axis.6. The results suggested that the gut microbiome influenced acute stress responses. This provided a basis for understanding gut-hypothalamic communication and its impact on behaviour in ducks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
British Poultry Science
British Poultry Science 农林科学-奶制品与动物科学
CiteScore
3.90
自引率
5.00%
发文量
88
审稿时长
4.5 months
期刊介绍: From its first volume in 1960, British Poultry Science has been a leading international journal for poultry scientists and advisers to the poultry industry throughout the world. Over 60% of the independently refereed papers published originate outside the UK. Most typically they report the results of biological studies with an experimental approach which either make an original contribution to fundamental science or are of obvious application to the industry. Subjects which are covered include: anatomy, embryology, biochemistry, biophysics, physiology, reproduction and genetics, behaviour, microbiology, endocrinology, nutrition, environmental science, food science, feeding stuffs and feeding, management and housing welfare, breeding, hatching, poultry meat and egg yields and quality.Papers that adopt a modelling approach or describe the scientific background to new equipment or apparatus directly relevant to the industry are also published. The journal also features rapid publication of Short Communications. Summaries of papers presented at the Spring Meeting of the UK Branch of the WPSA are published in British Poultry Abstracts .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信