Paula De Dios Andres, Mousumi Akter, Cecilie Ryberg, Brigitte Städler, Allen P. Liu
{"title":"巨型聚合物-脂质混合囊泡中微管原位聚合产生的不同网络形态。","authors":"Paula De Dios Andres, Mousumi Akter, Cecilie Ryberg, Brigitte Städler, Allen P. Liu","doi":"10.1002/adbi.202400601","DOIUrl":null,"url":null,"abstract":"<p>Creating artificial cells with a dynamic cytoskeleton, akin to those in living cells, is a major goal in bottom-up synthetic biology. In this study, we demonstrate the in situ polymerization of microtubules encapsulated in giant polymer-lipid hybrid vesicles (GHVs) composed of 1,2-dioleoyl-<i>sn</i>-glycero-3-phosphocholine and an amphiphilic block copolymer. The block copolymer is comprised of poly(cholesteryl methacrylate-<i>co</i>-butyl methacrylate) as the hydrophobic block and either poly(6-O-methacryloyl-D-galactopyranose) or poly(carboxyethyl acrylate) as the hydrophilic extension. Depending on the concentrations of guanosine triphosphate (GTP) or its slowly hydrolyzable analog, guanosine-5′-[(α,β)-methyleno]triphosphate (GMPCPP), different microtubule morphologies are observed, including encapsulated microtubule networks, spike protrusions, as well as membrane-associated or aggregated microtubules. Overall, this work represents a step forward in mimicking the cellular cytoskeletons and uncovering the influence of membrane composition on microtubule morphologies.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202400601","citationCount":"0","resultStr":"{\"title\":\"Distinct Network Morphologies from In Situ Polymerization of Microtubules in Giant Polymer-Lipid Hybrid Vesicles\",\"authors\":\"Paula De Dios Andres, Mousumi Akter, Cecilie Ryberg, Brigitte Städler, Allen P. Liu\",\"doi\":\"10.1002/adbi.202400601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Creating artificial cells with a dynamic cytoskeleton, akin to those in living cells, is a major goal in bottom-up synthetic biology. In this study, we demonstrate the in situ polymerization of microtubules encapsulated in giant polymer-lipid hybrid vesicles (GHVs) composed of 1,2-dioleoyl-<i>sn</i>-glycero-3-phosphocholine and an amphiphilic block copolymer. The block copolymer is comprised of poly(cholesteryl methacrylate-<i>co</i>-butyl methacrylate) as the hydrophobic block and either poly(6-O-methacryloyl-D-galactopyranose) or poly(carboxyethyl acrylate) as the hydrophilic extension. Depending on the concentrations of guanosine triphosphate (GTP) or its slowly hydrolyzable analog, guanosine-5′-[(α,β)-methyleno]triphosphate (GMPCPP), different microtubule morphologies are observed, including encapsulated microtubule networks, spike protrusions, as well as membrane-associated or aggregated microtubules. Overall, this work represents a step forward in mimicking the cellular cytoskeletons and uncovering the influence of membrane composition on microtubule morphologies.</p>\",\"PeriodicalId\":7234,\"journal\":{\"name\":\"Advanced biology\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202400601\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adbi.202400601\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adbi.202400601","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
创造具有动态细胞骨架的人造细胞,类似于活细胞,是自下而上合成生物学的一个主要目标。在这项研究中,我们展示了微管的原位聚合,这些微管被包裹在由1,2-二油基-锡-甘油-3-磷酸胆碱和两亲嵌段共聚物组成的巨大聚合物-脂杂化囊泡(ghv)中。嵌段共聚物由聚(甲基丙烯酸胆固醇酯-甲基丙烯酸丁酯)作为疏水嵌段和聚(6- o-甲基丙烯酸酯- d -半乳糖)或聚(羧基丙烯酸乙酯)作为亲水延伸组成。根据三磷酸鸟苷(GTP)或其可缓慢水解的类似物鸟苷-5′-[(α,β)-亚甲基]三磷酸鸟苷(GMPCPP)的浓度不同,可以观察到不同的微管形态,包括包封的微管网络、尖峰突起以及膜相关或聚集的微管。总的来说,这项工作在模拟细胞骨架和揭示膜组成对微管形态的影响方面迈出了一步。
Distinct Network Morphologies from In Situ Polymerization of Microtubules in Giant Polymer-Lipid Hybrid Vesicles
Creating artificial cells with a dynamic cytoskeleton, akin to those in living cells, is a major goal in bottom-up synthetic biology. In this study, we demonstrate the in situ polymerization of microtubules encapsulated in giant polymer-lipid hybrid vesicles (GHVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine and an amphiphilic block copolymer. The block copolymer is comprised of poly(cholesteryl methacrylate-co-butyl methacrylate) as the hydrophobic block and either poly(6-O-methacryloyl-D-galactopyranose) or poly(carboxyethyl acrylate) as the hydrophilic extension. Depending on the concentrations of guanosine triphosphate (GTP) or its slowly hydrolyzable analog, guanosine-5′-[(α,β)-methyleno]triphosphate (GMPCPP), different microtubule morphologies are observed, including encapsulated microtubule networks, spike protrusions, as well as membrane-associated or aggregated microtubules. Overall, this work represents a step forward in mimicking the cellular cytoskeletons and uncovering the influence of membrane composition on microtubule morphologies.