弥合差距:神经支架和再生的当代范式。

IF 5.8 3区 医学 Q1 DERMATOLOGY
Charles D Hwang, Seamus P Caragher, Rebekah J Bihun, Kyle R Eberlin
{"title":"弥合差距:神经支架和再生的当代范式。","authors":"Charles D Hwang, Seamus P Caragher, Rebekah J Bihun, Kyle R Eberlin","doi":"10.1089/wound.2024.0074","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injuries, especially those with complete transection of major nerves, create significant morbidity including debilitating pain, loss of protective haptic feedback, and impaired volitional control of musculature. The societal burden and cost of medical care for these injuries are enormous, with estimates in the United States alone in excess of $670 million per year. In clinical scenarios with a segmental nerve gap where end-to-end coaptation without tension is not possible, a \"bridge\" or scaffold must be interposed to facilitate communication between the proximal and distal stumps to facilitate organized growth following Wallerian degeneration. A multitude of constructs have been created and studied to facilitate this regeneration. Among the three overall types of bridge employed in contemporary clinical care-conduit/scaffold, allograft, and autograft-each has significant downsides ranging from limited successful nerve ingrowth to donor site morbidity. Despite the tremendous work over the last 150 years in nerve biology and medical technology for the treatment of peripheral nerve injury, the biological processes governing nerve regeneration remain incompletely understood. Especially in cases of long segmental gaps, there remains room for significant improvement. Ongoing studies have identified several promising modalities for nerve scaffolds to facilitate more efficient and effective neuronal outgrowth but still require further investigation. Here, we review contemporary paradigms in the treatment of segmental nerve injuries with interposing scaffolds and reexamine nerve physiology, regulatory programs in nerve regeneration, and strategic targets for neurogenic pathways that may facilitate novel treatment modalities.</p>","PeriodicalId":7413,"journal":{"name":"Advances in wound care","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the Gap: Contemporary Paradigms in Nerve Scaffolds and Regeneration.\",\"authors\":\"Charles D Hwang, Seamus P Caragher, Rebekah J Bihun, Kyle R Eberlin\",\"doi\":\"10.1089/wound.2024.0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peripheral nerve injuries, especially those with complete transection of major nerves, create significant morbidity including debilitating pain, loss of protective haptic feedback, and impaired volitional control of musculature. The societal burden and cost of medical care for these injuries are enormous, with estimates in the United States alone in excess of $670 million per year. In clinical scenarios with a segmental nerve gap where end-to-end coaptation without tension is not possible, a \\\"bridge\\\" or scaffold must be interposed to facilitate communication between the proximal and distal stumps to facilitate organized growth following Wallerian degeneration. A multitude of constructs have been created and studied to facilitate this regeneration. Among the three overall types of bridge employed in contemporary clinical care-conduit/scaffold, allograft, and autograft-each has significant downsides ranging from limited successful nerve ingrowth to donor site morbidity. Despite the tremendous work over the last 150 years in nerve biology and medical technology for the treatment of peripheral nerve injury, the biological processes governing nerve regeneration remain incompletely understood. Especially in cases of long segmental gaps, there remains room for significant improvement. Ongoing studies have identified several promising modalities for nerve scaffolds to facilitate more efficient and effective neuronal outgrowth but still require further investigation. Here, we review contemporary paradigms in the treatment of segmental nerve injuries with interposing scaffolds and reexamine nerve physiology, regulatory programs in nerve regeneration, and strategic targets for neurogenic pathways that may facilitate novel treatment modalities.</p>\",\"PeriodicalId\":7413,\"journal\":{\"name\":\"Advances in wound care\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in wound care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/wound.2024.0074\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in wound care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/wound.2024.0074","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

周围神经损伤,特别是那些主要神经完全横断的周围神经损伤,会产生显著的发病率,包括使人衰弱的疼痛,保护性触觉反馈的丧失,以及肌肉组织的意志控制受损。这些伤害的社会负担和医疗费用是巨大的,据估计仅在美国每年就超过6.7亿美元。在临床情况下,如果存在节段性神经间隙,端到端无张力的配合是不可能的,则必须插入“桥”或支架来促进近端和远端残端之间的沟通,以促进沃勒氏变性后有组织的生长。为了促进这种再生,已经创建和研究了许多结构。在当代临床护理中使用的三种桥-导管/支架,同种异体移植物和自体移植物-每一种都有明显的缺点,从成功的神经长入到供体部位的发病率。尽管在过去的150年里,神经生物学和医学技术在治疗周围神经损伤方面做了大量的工作,但控制神经再生的生物学过程仍然不完全清楚。特别是在长段间隙的情况下,仍有显著改进的余地。正在进行的研究已经确定了几种有希望的神经支架模式,以促进更高效和有效的神经元生长,但仍需要进一步的研究。在这里,我们回顾了目前使用插入支架治疗节段性神经损伤的范例,并重新审视了神经生理学、神经再生的调节程序以及可能促进新治疗方式的神经发生通路的战略目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging the Gap: Contemporary Paradigms in Nerve Scaffolds and Regeneration.

Peripheral nerve injuries, especially those with complete transection of major nerves, create significant morbidity including debilitating pain, loss of protective haptic feedback, and impaired volitional control of musculature. The societal burden and cost of medical care for these injuries are enormous, with estimates in the United States alone in excess of $670 million per year. In clinical scenarios with a segmental nerve gap where end-to-end coaptation without tension is not possible, a "bridge" or scaffold must be interposed to facilitate communication between the proximal and distal stumps to facilitate organized growth following Wallerian degeneration. A multitude of constructs have been created and studied to facilitate this regeneration. Among the three overall types of bridge employed in contemporary clinical care-conduit/scaffold, allograft, and autograft-each has significant downsides ranging from limited successful nerve ingrowth to donor site morbidity. Despite the tremendous work over the last 150 years in nerve biology and medical technology for the treatment of peripheral nerve injury, the biological processes governing nerve regeneration remain incompletely understood. Especially in cases of long segmental gaps, there remains room for significant improvement. Ongoing studies have identified several promising modalities for nerve scaffolds to facilitate more efficient and effective neuronal outgrowth but still require further investigation. Here, we review contemporary paradigms in the treatment of segmental nerve injuries with interposing scaffolds and reexamine nerve physiology, regulatory programs in nerve regeneration, and strategic targets for neurogenic pathways that may facilitate novel treatment modalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in wound care
Advances in wound care Medicine-Emergency Medicine
CiteScore
12.10
自引率
4.10%
发文量
62
期刊介绍: Advances in Wound Care rapidly shares research from bench to bedside, with wound care applications for burns, major trauma, blast injuries, surgery, and diabetic ulcers. The Journal provides a critical, peer-reviewed forum for the field of tissue injury and repair, with an emphasis on acute and chronic wounds. Advances in Wound Care explores novel research approaches and practices to deliver the latest scientific discoveries and developments. Advances in Wound Care coverage includes: Skin bioengineering, Skin and tissue regeneration, Acute, chronic, and complex wounds, Dressings, Anti-scar strategies, Inflammation, Burns and healing, Biofilm, Oxygen and angiogenesis, Critical limb ischemia, Military wound care, New devices and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信