{"title":"苯基丁酸锌改性超稳定无障碍量子点-彩色转换膜的研究。","authors":"Runchi Wang, Wei Ma, Qian Feng, Yaqian Yuan, Chong Geng, Shu Xu","doi":"10.1021/acsami.5c01384","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum dot (QD) color conversion films (CCFs) hold significant promise for advancing display technologies with their superior color performance and efficiency. However, achieving long-term stability in QD-CCFs without additional air-barrier film coatings remains a challenge. Here, we develop a surface passivation strategy using zinc phenylbutyrate (Zn(PA)<sub>2</sub>) to modify QDs through a trioctylphosphine-mediated surface reaction, which results in the selective capping of surface sulfur atoms by zinc-monophenylbutyrate. Density functional theory calculations and multiple-washing tests reveal robust -ZnPA binding that effectively passivates the QD surface and enhances resistance to environmental conditions. Moreover, the phenylbutyrate groups enhance the solubility of QDs in styrene, facilitating their copolymerization to create QD-PS CCFs with high QD concentration, excellent light uniformity, and long-term stability even after 500 h of water immersion and photoaging. CCFs incorporating mixtures of green and red QDs achieve a wide color gamut exceeding 120% of the NTSC standard, demonstrating the advantage of this approach for enhancing the color performance of the QD-CCFs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"18790-18799"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Ultra-stable Barrier-free Quantum Dots-Color Conversion Film via Zinc Phenylbutyrate Modification.\",\"authors\":\"Runchi Wang, Wei Ma, Qian Feng, Yaqian Yuan, Chong Geng, Shu Xu\",\"doi\":\"10.1021/acsami.5c01384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum dot (QD) color conversion films (CCFs) hold significant promise for advancing display technologies with their superior color performance and efficiency. However, achieving long-term stability in QD-CCFs without additional air-barrier film coatings remains a challenge. Here, we develop a surface passivation strategy using zinc phenylbutyrate (Zn(PA)<sub>2</sub>) to modify QDs through a trioctylphosphine-mediated surface reaction, which results in the selective capping of surface sulfur atoms by zinc-monophenylbutyrate. Density functional theory calculations and multiple-washing tests reveal robust -ZnPA binding that effectively passivates the QD surface and enhances resistance to environmental conditions. Moreover, the phenylbutyrate groups enhance the solubility of QDs in styrene, facilitating their copolymerization to create QD-PS CCFs with high QD concentration, excellent light uniformity, and long-term stability even after 500 h of water immersion and photoaging. CCFs incorporating mixtures of green and red QDs achieve a wide color gamut exceeding 120% of the NTSC standard, demonstrating the advantage of this approach for enhancing the color performance of the QD-CCFs.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"18790-18799\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c01384\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01384","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Toward Ultra-stable Barrier-free Quantum Dots-Color Conversion Film via Zinc Phenylbutyrate Modification.
Quantum dot (QD) color conversion films (CCFs) hold significant promise for advancing display technologies with their superior color performance and efficiency. However, achieving long-term stability in QD-CCFs without additional air-barrier film coatings remains a challenge. Here, we develop a surface passivation strategy using zinc phenylbutyrate (Zn(PA)2) to modify QDs through a trioctylphosphine-mediated surface reaction, which results in the selective capping of surface sulfur atoms by zinc-monophenylbutyrate. Density functional theory calculations and multiple-washing tests reveal robust -ZnPA binding that effectively passivates the QD surface and enhances resistance to environmental conditions. Moreover, the phenylbutyrate groups enhance the solubility of QDs in styrene, facilitating their copolymerization to create QD-PS CCFs with high QD concentration, excellent light uniformity, and long-term stability even after 500 h of water immersion and photoaging. CCFs incorporating mixtures of green and red QDs achieve a wide color gamut exceeding 120% of the NTSC standard, demonstrating the advantage of this approach for enhancing the color performance of the QD-CCFs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.