自然环境中季节和昼夜转录组图谱揭示了紫花苜蓿开花时间调控网络。

IF 6 1区 生物学 Q1 PLANT SCIENCES
Yuanyuan Zhang, Haijun Zhao, Haoxin Xiang, Jiashuo Zhang, Lei Wang
{"title":"自然环境中季节和昼夜转录组图谱揭示了紫花苜蓿开花时间调控网络。","authors":"Yuanyuan Zhang, Haijun Zhao, Haoxin Xiang, Jiashuo Zhang, Lei Wang","doi":"10.1111/pce.15466","DOIUrl":null,"url":null,"abstract":"<p><p>Alfalfa (Medicago sativa L.) is a globally cultivated perennial forage legume. Flowering time, an important agronomic trait of alfalfa, is pivotal for farmers to determine the optimal harvest stage, thereby maximizing economic benefits. However, the underlying molecular basis of flowering time regulation in alfalfa remains unclear. Here we generated a comprehensive full-length, seasonal and diurnal transcriptome atlas comprising 108 samples, including two sets of late- and early-flowering alfalfa across spring, summer and autumn in the natural environment. A total of 389 candidate flowering time-related genes were identified in alfalfa, of which 92 were differentially expressed between early and late flowering plants. Further, we revealed that flowering time regulation genes predominantly identified in spring were mainly involved in vernalization, while genes exclusively identified in summer and autumn were primarily involved in circadian and photoperiodic pathways. Moreover, diurnal dynamics of transcriptomes demonstrate the precise orchestration of various biological processes, including chloroplast development, redox processes, biotic stress responses, growth and development, occurs at designated times throughout the day in accordance with external environmental cues. Together, our results provide a valuable resource for future manipulation of genetic control of flowering time in alfalfa, and demonstrate how plants adapt to diurnal and seasonal environments.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal and Diurnal Transcriptome Atlas in Natural Environment Reveals Flowering Time Regulatory Network in Alfalfa.\",\"authors\":\"Yuanyuan Zhang, Haijun Zhao, Haoxin Xiang, Jiashuo Zhang, Lei Wang\",\"doi\":\"10.1111/pce.15466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alfalfa (Medicago sativa L.) is a globally cultivated perennial forage legume. Flowering time, an important agronomic trait of alfalfa, is pivotal for farmers to determine the optimal harvest stage, thereby maximizing economic benefits. However, the underlying molecular basis of flowering time regulation in alfalfa remains unclear. Here we generated a comprehensive full-length, seasonal and diurnal transcriptome atlas comprising 108 samples, including two sets of late- and early-flowering alfalfa across spring, summer and autumn in the natural environment. A total of 389 candidate flowering time-related genes were identified in alfalfa, of which 92 were differentially expressed between early and late flowering plants. Further, we revealed that flowering time regulation genes predominantly identified in spring were mainly involved in vernalization, while genes exclusively identified in summer and autumn were primarily involved in circadian and photoperiodic pathways. Moreover, diurnal dynamics of transcriptomes demonstrate the precise orchestration of various biological processes, including chloroplast development, redox processes, biotic stress responses, growth and development, occurs at designated times throughout the day in accordance with external environmental cues. Together, our results provide a valuable resource for future manipulation of genetic control of flowering time in alfalfa, and demonstrate how plants adapt to diurnal and seasonal environments.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15466\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15466","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

苜蓿(Medicago sativa L.)是全球种植的多年生饲草豆科植物。开花时间是苜蓿重要的农艺性状,是农民确定最佳采收期,实现经济效益最大化的关键。然而,紫花苜蓿开花时间调控的潜在分子基础尚不清楚。在这里,我们生成了一个全面的全长,季节性和昼夜转录组图谱,包括108个样本,包括两组晚花和早花苜蓿在春季,夏季和秋季的自然环境。在紫花苜蓿中共鉴定出389个候选开花时间相关基因,其中92个在早花和晚花植物中差异表达。此外,我们发现在春季显性的开花时间调控基因主要参与春化,而在夏季和秋季特异性的基因主要参与昼夜节律和光周期途径。此外,转录组的昼夜动态显示了各种生物过程的精确编排,包括叶绿体发育、氧化还原过程、生物应激反应、生长和发育,这些过程在一天中的指定时间根据外部环境线索发生。总之,我们的研究结果为未来苜蓿开花时间的遗传控制提供了宝贵的资源,并展示了植物如何适应昼夜和季节环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal and Diurnal Transcriptome Atlas in Natural Environment Reveals Flowering Time Regulatory Network in Alfalfa.

Alfalfa (Medicago sativa L.) is a globally cultivated perennial forage legume. Flowering time, an important agronomic trait of alfalfa, is pivotal for farmers to determine the optimal harvest stage, thereby maximizing economic benefits. However, the underlying molecular basis of flowering time regulation in alfalfa remains unclear. Here we generated a comprehensive full-length, seasonal and diurnal transcriptome atlas comprising 108 samples, including two sets of late- and early-flowering alfalfa across spring, summer and autumn in the natural environment. A total of 389 candidate flowering time-related genes were identified in alfalfa, of which 92 were differentially expressed between early and late flowering plants. Further, we revealed that flowering time regulation genes predominantly identified in spring were mainly involved in vernalization, while genes exclusively identified in summer and autumn were primarily involved in circadian and photoperiodic pathways. Moreover, diurnal dynamics of transcriptomes demonstrate the precise orchestration of various biological processes, including chloroplast development, redox processes, biotic stress responses, growth and development, occurs at designated times throughout the day in accordance with external environmental cues. Together, our results provide a valuable resource for future manipulation of genetic control of flowering time in alfalfa, and demonstrate how plants adapt to diurnal and seasonal environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信