{"title":"口服功能性多酚纳米酶装甲益生菌增强改善肠道炎症和微生物群失调。","authors":"Yong Zhu, Ziqu Fang, Jie Bai, Longhui Wang, Jiaqing Chen, Zehua Zhang, Qiang Wang, Weiwei Sheng, Xueyin Pan, Zhenyuan Gao, Dengqiu Xu, Pengkai Wu, Beicheng Sun","doi":"10.1002/advs.202411939","DOIUrl":null,"url":null,"abstract":"<p>Maintaining microbiota balance and enhancing the antioxidant performance of nanozyme-based probiotic systems are crucial for effective inflammatory bowel disease (IBD) therapy. Despite significant advancements, developing a green and safe coating technology that functionalizes probiotics with nanozymes while preserving the activity of both components remains a challenge. To address this, chitosan-modified epigallocatechin gallate (EGCG-CS, EC)is synthesized, leveraging the intrinsic adhesive and coordination properties of polyphenols to capture gold nanozymes (AuNPs), forming ECA complexes that enhance nanozyme activity. When coated onto <i>Escherichia coli</i> Nissle 1917 (EcN), the resulting ECA@EcN system effectively scavenged reactive oxygen species (ROS), improving probiotic viability and promoting colon accumulation. Mechanistically, ECA protected EcN by suppressing the activation of the Flagellar Assembly and Branched-Chain Amino Acid Synthesis pathways, ultimately alleviating inflammation and modulating intestinal microbial communities to relieve IBD symptoms. Given the biocompatibility of its components and the environmentally friendly assembly approach, this polyphenol-nanozyme-armored probiotic system represents a promising platform for IBD treatment.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 17","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202411939","citationCount":"0","resultStr":"{\"title\":\"Orally Administered Functional Polyphenol-Nanozyme-Armored Probiotics for Enhanced Amelioration of Intestinal Inflammation and Microbiota Dysbiosis\",\"authors\":\"Yong Zhu, Ziqu Fang, Jie Bai, Longhui Wang, Jiaqing Chen, Zehua Zhang, Qiang Wang, Weiwei Sheng, Xueyin Pan, Zhenyuan Gao, Dengqiu Xu, Pengkai Wu, Beicheng Sun\",\"doi\":\"10.1002/advs.202411939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maintaining microbiota balance and enhancing the antioxidant performance of nanozyme-based probiotic systems are crucial for effective inflammatory bowel disease (IBD) therapy. Despite significant advancements, developing a green and safe coating technology that functionalizes probiotics with nanozymes while preserving the activity of both components remains a challenge. To address this, chitosan-modified epigallocatechin gallate (EGCG-CS, EC)is synthesized, leveraging the intrinsic adhesive and coordination properties of polyphenols to capture gold nanozymes (AuNPs), forming ECA complexes that enhance nanozyme activity. When coated onto <i>Escherichia coli</i> Nissle 1917 (EcN), the resulting ECA@EcN system effectively scavenged reactive oxygen species (ROS), improving probiotic viability and promoting colon accumulation. Mechanistically, ECA protected EcN by suppressing the activation of the Flagellar Assembly and Branched-Chain Amino Acid Synthesis pathways, ultimately alleviating inflammation and modulating intestinal microbial communities to relieve IBD symptoms. Given the biocompatibility of its components and the environmentally friendly assembly approach, this polyphenol-nanozyme-armored probiotic system represents a promising platform for IBD treatment.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 17\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202411939\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202411939\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202411939","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Orally Administered Functional Polyphenol-Nanozyme-Armored Probiotics for Enhanced Amelioration of Intestinal Inflammation and Microbiota Dysbiosis
Maintaining microbiota balance and enhancing the antioxidant performance of nanozyme-based probiotic systems are crucial for effective inflammatory bowel disease (IBD) therapy. Despite significant advancements, developing a green and safe coating technology that functionalizes probiotics with nanozymes while preserving the activity of both components remains a challenge. To address this, chitosan-modified epigallocatechin gallate (EGCG-CS, EC)is synthesized, leveraging the intrinsic adhesive and coordination properties of polyphenols to capture gold nanozymes (AuNPs), forming ECA complexes that enhance nanozyme activity. When coated onto Escherichia coli Nissle 1917 (EcN), the resulting ECA@EcN system effectively scavenged reactive oxygen species (ROS), improving probiotic viability and promoting colon accumulation. Mechanistically, ECA protected EcN by suppressing the activation of the Flagellar Assembly and Branched-Chain Amino Acid Synthesis pathways, ultimately alleviating inflammation and modulating intestinal microbial communities to relieve IBD symptoms. Given the biocompatibility of its components and the environmentally friendly assembly approach, this polyphenol-nanozyme-armored probiotic system represents a promising platform for IBD treatment.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.