{"title":"二维异孔共价有机框架:从结构到功能。","authors":"Cheng Qian, Xin Zhao","doi":"10.1021/acs.accounts.4c00799","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusCovalent organic frameworks (COFs) represent a fascinating class of crystalline porous polymers constructed from organic building blocks linked by covalent bonds. Benefiting from their high crystallinity, large surface area, and ease of functionalization, COFs have demonstrated significant potential across various fields, including gas adsorption, luminescence, sensing, catalysis, energy storage, nanomedicine, etc. In the first decade of COF development, only those with homogeneous porosity have been constructed, and thus, their topological structures are quite limited. An exciting progress in the field of COFs is the emergence of two-dimensional (2D) COFs with hierarchical porosity, known as heteropore COFs, which have garnered considerable attention in recent years. Heteropore COFs are deliberately designed to integrate different types of pores into a single framework, resulting in heterogeneous porosity that imparts captivating properties and functions. Compared to their homopore counterparts, heteropore COFs offer a compelling platform for creating hierarchically structured porous materials, thanks to their distinctive multicompartment architectures and different pore environments. Since we achieved the construction of the first heteropore COF featuring both micropores and mesopores in 2014, substantial advancements have been achieved in the realm of heteropre COFs over the past decade, considerably increasing the topological diversity of 2D COFs. In this Account, we summarize our contributions to the development of 2D heteropore COFs. First, we review representative design strategies for the construction of 2D heteropore COFs, including the angle-specific-vertex, heterostructural-mixed-linker, multiple-linking-site, and desymmetrization-design strategies and their combinations as well as the dynamic covalent chemistry-mediated linker exchange strategy. Based on these strategies, heteroporous frameworks with two, three, and four different kinds of pores and different types of linkages have been successfully fabricated. Next, we discuss the properties and applications of heteropore COFs, including those shared with their homopore counterparts and unique ones originating from their hierarchical porous structures. Our research has shown that heteropore COFs have inherited the common features from their homopore counterparts and exhibited application potentials in gas adsorption, chemical sensing, environmental remediation, etc. More importantly, the multicompartment architecture and heterogeneous pore environment of heteropore COFs offer distinct benefits, for which exclusive applications and unique properties of heteropore COFs distinct from those of homopore COFs have been demonstrated. Finally, we highlight the current challenges and future directions of heteropore COFs, with an emphasis on the development of structural design and synthetic methodologies, precise structural characterization, and the exploration of unique properties and advanced applications. We believe that this Account will offer valuable insights into the design and synthesis of COFs with heteroporous structures, thereby accelerating their applications across a wide range of interdisciplinary research areas.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"1192-1209"},"PeriodicalIF":17.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Heteropore Covalent Organic Frameworks: From Construction to Functions.\",\"authors\":\"Cheng Qian, Xin Zhao\",\"doi\":\"10.1021/acs.accounts.4c00799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ConspectusCovalent organic frameworks (COFs) represent a fascinating class of crystalline porous polymers constructed from organic building blocks linked by covalent bonds. Benefiting from their high crystallinity, large surface area, and ease of functionalization, COFs have demonstrated significant potential across various fields, including gas adsorption, luminescence, sensing, catalysis, energy storage, nanomedicine, etc. In the first decade of COF development, only those with homogeneous porosity have been constructed, and thus, their topological structures are quite limited. An exciting progress in the field of COFs is the emergence of two-dimensional (2D) COFs with hierarchical porosity, known as heteropore COFs, which have garnered considerable attention in recent years. Heteropore COFs are deliberately designed to integrate different types of pores into a single framework, resulting in heterogeneous porosity that imparts captivating properties and functions. Compared to their homopore counterparts, heteropore COFs offer a compelling platform for creating hierarchically structured porous materials, thanks to their distinctive multicompartment architectures and different pore environments. Since we achieved the construction of the first heteropore COF featuring both micropores and mesopores in 2014, substantial advancements have been achieved in the realm of heteropre COFs over the past decade, considerably increasing the topological diversity of 2D COFs. In this Account, we summarize our contributions to the development of 2D heteropore COFs. First, we review representative design strategies for the construction of 2D heteropore COFs, including the angle-specific-vertex, heterostructural-mixed-linker, multiple-linking-site, and desymmetrization-design strategies and their combinations as well as the dynamic covalent chemistry-mediated linker exchange strategy. Based on these strategies, heteroporous frameworks with two, three, and four different kinds of pores and different types of linkages have been successfully fabricated. Next, we discuss the properties and applications of heteropore COFs, including those shared with their homopore counterparts and unique ones originating from their hierarchical porous structures. Our research has shown that heteropore COFs have inherited the common features from their homopore counterparts and exhibited application potentials in gas adsorption, chemical sensing, environmental remediation, etc. More importantly, the multicompartment architecture and heterogeneous pore environment of heteropore COFs offer distinct benefits, for which exclusive applications and unique properties of heteropore COFs distinct from those of homopore COFs have been demonstrated. Finally, we highlight the current challenges and future directions of heteropore COFs, with an emphasis on the development of structural design and synthetic methodologies, precise structural characterization, and the exploration of unique properties and advanced applications. We believe that this Account will offer valuable insights into the design and synthesis of COFs with heteroporous structures, thereby accelerating their applications across a wide range of interdisciplinary research areas.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"1192-1209\"},\"PeriodicalIF\":17.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.accounts.4c00799\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00799","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-Dimensional Heteropore Covalent Organic Frameworks: From Construction to Functions.
ConspectusCovalent organic frameworks (COFs) represent a fascinating class of crystalline porous polymers constructed from organic building blocks linked by covalent bonds. Benefiting from their high crystallinity, large surface area, and ease of functionalization, COFs have demonstrated significant potential across various fields, including gas adsorption, luminescence, sensing, catalysis, energy storage, nanomedicine, etc. In the first decade of COF development, only those with homogeneous porosity have been constructed, and thus, their topological structures are quite limited. An exciting progress in the field of COFs is the emergence of two-dimensional (2D) COFs with hierarchical porosity, known as heteropore COFs, which have garnered considerable attention in recent years. Heteropore COFs are deliberately designed to integrate different types of pores into a single framework, resulting in heterogeneous porosity that imparts captivating properties and functions. Compared to their homopore counterparts, heteropore COFs offer a compelling platform for creating hierarchically structured porous materials, thanks to their distinctive multicompartment architectures and different pore environments. Since we achieved the construction of the first heteropore COF featuring both micropores and mesopores in 2014, substantial advancements have been achieved in the realm of heteropre COFs over the past decade, considerably increasing the topological diversity of 2D COFs. In this Account, we summarize our contributions to the development of 2D heteropore COFs. First, we review representative design strategies for the construction of 2D heteropore COFs, including the angle-specific-vertex, heterostructural-mixed-linker, multiple-linking-site, and desymmetrization-design strategies and their combinations as well as the dynamic covalent chemistry-mediated linker exchange strategy. Based on these strategies, heteroporous frameworks with two, three, and four different kinds of pores and different types of linkages have been successfully fabricated. Next, we discuss the properties and applications of heteropore COFs, including those shared with their homopore counterparts and unique ones originating from their hierarchical porous structures. Our research has shown that heteropore COFs have inherited the common features from their homopore counterparts and exhibited application potentials in gas adsorption, chemical sensing, environmental remediation, etc. More importantly, the multicompartment architecture and heterogeneous pore environment of heteropore COFs offer distinct benefits, for which exclusive applications and unique properties of heteropore COFs distinct from those of homopore COFs have been demonstrated. Finally, we highlight the current challenges and future directions of heteropore COFs, with an emphasis on the development of structural design and synthetic methodologies, precise structural characterization, and the exploration of unique properties and advanced applications. We believe that this Account will offer valuable insights into the design and synthesis of COFs with heteroporous structures, thereby accelerating their applications across a wide range of interdisciplinary research areas.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.