二维异孔共价有机框架:从结构到功能。

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2025-04-15 Epub Date: 2025-03-11 DOI:10.1021/acs.accounts.4c00799
Cheng Qian, Xin Zhao
{"title":"二维异孔共价有机框架:从结构到功能。","authors":"Cheng Qian, Xin Zhao","doi":"10.1021/acs.accounts.4c00799","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusCovalent organic frameworks (COFs) represent a fascinating class of crystalline porous polymers constructed from organic building blocks linked by covalent bonds. Benefiting from their high crystallinity, large surface area, and ease of functionalization, COFs have demonstrated significant potential across various fields, including gas adsorption, luminescence, sensing, catalysis, energy storage, nanomedicine, etc. In the first decade of COF development, only those with homogeneous porosity have been constructed, and thus, their topological structures are quite limited. An exciting progress in the field of COFs is the emergence of two-dimensional (2D) COFs with hierarchical porosity, known as heteropore COFs, which have garnered considerable attention in recent years. Heteropore COFs are deliberately designed to integrate different types of pores into a single framework, resulting in heterogeneous porosity that imparts captivating properties and functions. Compared to their homopore counterparts, heteropore COFs offer a compelling platform for creating hierarchically structured porous materials, thanks to their distinctive multicompartment architectures and different pore environments. Since we achieved the construction of the first heteropore COF featuring both micropores and mesopores in 2014, substantial advancements have been achieved in the realm of heteropre COFs over the past decade, considerably increasing the topological diversity of 2D COFs. In this Account, we summarize our contributions to the development of 2D heteropore COFs. First, we review representative design strategies for the construction of 2D heteropore COFs, including the angle-specific-vertex, heterostructural-mixed-linker, multiple-linking-site, and desymmetrization-design strategies and their combinations as well as the dynamic covalent chemistry-mediated linker exchange strategy. Based on these strategies, heteroporous frameworks with two, three, and four different kinds of pores and different types of linkages have been successfully fabricated. Next, we discuss the properties and applications of heteropore COFs, including those shared with their homopore counterparts and unique ones originating from their hierarchical porous structures. Our research has shown that heteropore COFs have inherited the common features from their homopore counterparts and exhibited application potentials in gas adsorption, chemical sensing, environmental remediation, etc. More importantly, the multicompartment architecture and heterogeneous pore environment of heteropore COFs offer distinct benefits, for which exclusive applications and unique properties of heteropore COFs distinct from those of homopore COFs have been demonstrated. Finally, we highlight the current challenges and future directions of heteropore COFs, with an emphasis on the development of structural design and synthetic methodologies, precise structural characterization, and the exploration of unique properties and advanced applications. We believe that this Account will offer valuable insights into the design and synthesis of COFs with heteroporous structures, thereby accelerating their applications across a wide range of interdisciplinary research areas.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"1192-1209"},"PeriodicalIF":17.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Heteropore Covalent Organic Frameworks: From Construction to Functions.\",\"authors\":\"Cheng Qian, Xin Zhao\",\"doi\":\"10.1021/acs.accounts.4c00799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ConspectusCovalent organic frameworks (COFs) represent a fascinating class of crystalline porous polymers constructed from organic building blocks linked by covalent bonds. Benefiting from their high crystallinity, large surface area, and ease of functionalization, COFs have demonstrated significant potential across various fields, including gas adsorption, luminescence, sensing, catalysis, energy storage, nanomedicine, etc. In the first decade of COF development, only those with homogeneous porosity have been constructed, and thus, their topological structures are quite limited. An exciting progress in the field of COFs is the emergence of two-dimensional (2D) COFs with hierarchical porosity, known as heteropore COFs, which have garnered considerable attention in recent years. Heteropore COFs are deliberately designed to integrate different types of pores into a single framework, resulting in heterogeneous porosity that imparts captivating properties and functions. Compared to their homopore counterparts, heteropore COFs offer a compelling platform for creating hierarchically structured porous materials, thanks to their distinctive multicompartment architectures and different pore environments. Since we achieved the construction of the first heteropore COF featuring both micropores and mesopores in 2014, substantial advancements have been achieved in the realm of heteropre COFs over the past decade, considerably increasing the topological diversity of 2D COFs. In this Account, we summarize our contributions to the development of 2D heteropore COFs. First, we review representative design strategies for the construction of 2D heteropore COFs, including the angle-specific-vertex, heterostructural-mixed-linker, multiple-linking-site, and desymmetrization-design strategies and their combinations as well as the dynamic covalent chemistry-mediated linker exchange strategy. Based on these strategies, heteroporous frameworks with two, three, and four different kinds of pores and different types of linkages have been successfully fabricated. Next, we discuss the properties and applications of heteropore COFs, including those shared with their homopore counterparts and unique ones originating from their hierarchical porous structures. Our research has shown that heteropore COFs have inherited the common features from their homopore counterparts and exhibited application potentials in gas adsorption, chemical sensing, environmental remediation, etc. More importantly, the multicompartment architecture and heterogeneous pore environment of heteropore COFs offer distinct benefits, for which exclusive applications and unique properties of heteropore COFs distinct from those of homopore COFs have been demonstrated. Finally, we highlight the current challenges and future directions of heteropore COFs, with an emphasis on the development of structural design and synthetic methodologies, precise structural characterization, and the exploration of unique properties and advanced applications. We believe that this Account will offer valuable insights into the design and synthesis of COFs with heteroporous structures, thereby accelerating their applications across a wide range of interdisciplinary research areas.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"1192-1209\"},\"PeriodicalIF\":17.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.accounts.4c00799\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00799","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)代表了一类迷人的晶体多孔聚合物,由共价键连接的有机构建块构成。COFs具有高结晶度、大表面积、易于功能化等优点,在气体吸附、发光、传感、催化、储能、纳米医学等领域具有巨大的应用潜力。在COF发展的前十年,只构建了具有均匀孔隙度的COF,因此其拓扑结构相当有限。近年来,具有分层孔隙度的二维COFs(即异孔COFs)的出现引起了人们的广泛关注,这是COFs领域的一个令人兴奋的进展。异孔COFs的设计是为了将不同类型的孔隙整合到一个框架中,从而产生非均质孔隙,赋予其迷人的性能和功能。与同孔COFs相比,异孔COFs由于其独特的多室结构和不同的孔隙环境,为创建分层结构的多孔材料提供了一个引人注目的平台。自2014年我们成功构建了第一个同时具有微孔和介孔的异质多孔碳纳米管以来,在过去的十年里,异质多孔碳纳米管领域取得了实质性的进展,大大增加了二维多孔碳纳米管的拓扑多样性。在这篇文章中,我们总结了我们对二维异孔COFs发展的贡献。首先,综述了具有代表性的二维异孔COFs的设计策略,包括特定角顶点设计策略、异质结构混合连接策略、多连接位点设计策略和去对称设计策略及其组合,以及动态共价化学介导的连接体交换策略。在此基础上,成功制备了具有两种、三种和四种不同类型孔和不同类型键的杂孔骨架。接下来,我们讨论了异孔COFs的性质和应用,包括与同孔COFs共有的性质和源于其分层多孔结构的独特性质。我们的研究表明,异孔COFs继承了同孔COFs的共同特征,在气体吸附、化学传感、环境修复等方面具有应用潜力。更重要的是,异孔COFs的多室结构和非均质孔隙环境具有明显的优势,因此异孔COFs与同孔COFs的独特应用和独特性能已经得到了证明。最后,我们强调了异孔COFs目前面临的挑战和未来的发展方向,重点是结构设计和合成方法的发展,精确的结构表征,以及独特性能和先进应用的探索。我们相信,该报告将为设计和合成具有杂孔结构的COFs提供有价值的见解,从而加速其在广泛的跨学科研究领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional Heteropore Covalent Organic Frameworks: From Construction to Functions.

ConspectusCovalent organic frameworks (COFs) represent a fascinating class of crystalline porous polymers constructed from organic building blocks linked by covalent bonds. Benefiting from their high crystallinity, large surface area, and ease of functionalization, COFs have demonstrated significant potential across various fields, including gas adsorption, luminescence, sensing, catalysis, energy storage, nanomedicine, etc. In the first decade of COF development, only those with homogeneous porosity have been constructed, and thus, their topological structures are quite limited. An exciting progress in the field of COFs is the emergence of two-dimensional (2D) COFs with hierarchical porosity, known as heteropore COFs, which have garnered considerable attention in recent years. Heteropore COFs are deliberately designed to integrate different types of pores into a single framework, resulting in heterogeneous porosity that imparts captivating properties and functions. Compared to their homopore counterparts, heteropore COFs offer a compelling platform for creating hierarchically structured porous materials, thanks to their distinctive multicompartment architectures and different pore environments. Since we achieved the construction of the first heteropore COF featuring both micropores and mesopores in 2014, substantial advancements have been achieved in the realm of heteropre COFs over the past decade, considerably increasing the topological diversity of 2D COFs. In this Account, we summarize our contributions to the development of 2D heteropore COFs. First, we review representative design strategies for the construction of 2D heteropore COFs, including the angle-specific-vertex, heterostructural-mixed-linker, multiple-linking-site, and desymmetrization-design strategies and their combinations as well as the dynamic covalent chemistry-mediated linker exchange strategy. Based on these strategies, heteroporous frameworks with two, three, and four different kinds of pores and different types of linkages have been successfully fabricated. Next, we discuss the properties and applications of heteropore COFs, including those shared with their homopore counterparts and unique ones originating from their hierarchical porous structures. Our research has shown that heteropore COFs have inherited the common features from their homopore counterparts and exhibited application potentials in gas adsorption, chemical sensing, environmental remediation, etc. More importantly, the multicompartment architecture and heterogeneous pore environment of heteropore COFs offer distinct benefits, for which exclusive applications and unique properties of heteropore COFs distinct from those of homopore COFs have been demonstrated. Finally, we highlight the current challenges and future directions of heteropore COFs, with an emphasis on the development of structural design and synthetic methodologies, precise structural characterization, and the exploration of unique properties and advanced applications. We believe that this Account will offer valuable insights into the design and synthesis of COFs with heteroporous structures, thereby accelerating their applications across a wide range of interdisciplinary research areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信