深部致密砂岩油藏水平井开发关键技术

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Yiting Guan, Xin Cheng, Xiaoyang Chen
{"title":"深部致密砂岩油藏水平井开发关键技术","authors":"Yiting Guan,&nbsp;Xin Cheng,&nbsp;Xiaoyang Chen","doi":"10.1002/ese3.2068","DOIUrl":null,"url":null,"abstract":"<p>Deep tight sandstone oil and gas reservoirs are exerting an increasingly crucial role in the augmentation of fossil energy reserves and the provision of energy. On account of the intricate geological conditions and the deficiency of a comprehensive set of exploration and development engineering technologies as well as supporting processes, the present development of deep tight sandstone oil and gas reservoirs remains in its nascent stage. Through the analysis and generalization of the horizontal well development technology for deep tight sandstone oil and gas reservoirs, a series of technologies have been established, encompassing reservoir geological evaluation and modeling, horizontal well development reservoir engineering validation, horizontal well geological design, and enhanced oil recovery processes. By taking the C 6 reservoir in Ordos basin, China as the research subject, in light of the research outcomes regarding the damage mechanisms and potential damage factors of tight sandstone oil and gas reservoirs, a geological evaluation approach based on the well log response characteristics was constructed, clarifying the porosity and permeability features of the C 6 reservoir, establishing the numerical model of the oil reservoir, and further elaborating the methods for dividing the development layers, selecting the development well pattern, and determining the development well density. The design parameters of horizontal well-segmented hydraulic fracturing were meticulously optimized, resulting in a minimum cluster spacing of 7 m and a maximum cluster spacing of 20 m. Given the influence of horizontal stress differences, the optimum fracturing density was ascertained to be 16 perforations per meter, and the optimal fracturing fluid volume was identified through simulation to range from 12 to 25 m<sup>3</sup>/m. The crucial technologies for the development of tight sandstone oil and gas reservoirs in horizontal wells have been clearly identified, offering theoretical direction for the efficient exploitation of deep tight sandstone oil and gas reservoirs.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1323-1336"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2068","citationCount":"0","resultStr":"{\"title\":\"Key Technologies for Horizontal Well Development in Deep Tight Sandstone Reservoirs\",\"authors\":\"Yiting Guan,&nbsp;Xin Cheng,&nbsp;Xiaoyang Chen\",\"doi\":\"10.1002/ese3.2068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep tight sandstone oil and gas reservoirs are exerting an increasingly crucial role in the augmentation of fossil energy reserves and the provision of energy. On account of the intricate geological conditions and the deficiency of a comprehensive set of exploration and development engineering technologies as well as supporting processes, the present development of deep tight sandstone oil and gas reservoirs remains in its nascent stage. Through the analysis and generalization of the horizontal well development technology for deep tight sandstone oil and gas reservoirs, a series of technologies have been established, encompassing reservoir geological evaluation and modeling, horizontal well development reservoir engineering validation, horizontal well geological design, and enhanced oil recovery processes. By taking the C 6 reservoir in Ordos basin, China as the research subject, in light of the research outcomes regarding the damage mechanisms and potential damage factors of tight sandstone oil and gas reservoirs, a geological evaluation approach based on the well log response characteristics was constructed, clarifying the porosity and permeability features of the C 6 reservoir, establishing the numerical model of the oil reservoir, and further elaborating the methods for dividing the development layers, selecting the development well pattern, and determining the development well density. The design parameters of horizontal well-segmented hydraulic fracturing were meticulously optimized, resulting in a minimum cluster spacing of 7 m and a maximum cluster spacing of 20 m. Given the influence of horizontal stress differences, the optimum fracturing density was ascertained to be 16 perforations per meter, and the optimal fracturing fluid volume was identified through simulation to range from 12 to 25 m<sup>3</sup>/m. The crucial technologies for the development of tight sandstone oil and gas reservoirs in horizontal wells have been clearly identified, offering theoretical direction for the efficient exploitation of deep tight sandstone oil and gas reservoirs.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 3\",\"pages\":\"1323-1336\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2068\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

深层致密砂岩油气藏在增加化石能源储量和提供能源方面发挥着越来越重要的作用。由于地质条件复杂,缺乏一整套勘探开发工程技术和配套工艺,目前深层致密砂岩油气藏开发仍处于起步阶段。通过对深层致密砂岩油气藏水平井开发技术的分析与概括,建立了包括储层地质评价与建模、水平井开发油藏工程验证、水平井地质设计、提高采收率工艺等一系列技术。以鄂尔多斯盆地c6储层为研究对象,根据致密砂岩油气藏损伤机理和潜在损伤因素的研究成果,构建了基于测井响应特征的地质评价方法,明确了c6储层的孔渗特征,建立了储层数值模型;并进一步阐述了开发层划分、开发井网选择、开发井密度确定的方法。对水平井分段水力压裂设计参数进行了精心优化,最小簇间距为7 m,最大簇间距为20 m。考虑水平应力差的影响,确定最佳压裂密度为16孔/m,模拟确定最佳压裂液体积为12 ~ 25 m3/m。明确了致密砂岩油气藏水平井开发的关键技术,为深部致密砂岩油气藏的高效开发提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Key Technologies for Horizontal Well Development in Deep Tight Sandstone Reservoirs

Key Technologies for Horizontal Well Development in Deep Tight Sandstone Reservoirs

Deep tight sandstone oil and gas reservoirs are exerting an increasingly crucial role in the augmentation of fossil energy reserves and the provision of energy. On account of the intricate geological conditions and the deficiency of a comprehensive set of exploration and development engineering technologies as well as supporting processes, the present development of deep tight sandstone oil and gas reservoirs remains in its nascent stage. Through the analysis and generalization of the horizontal well development technology for deep tight sandstone oil and gas reservoirs, a series of technologies have been established, encompassing reservoir geological evaluation and modeling, horizontal well development reservoir engineering validation, horizontal well geological design, and enhanced oil recovery processes. By taking the C 6 reservoir in Ordos basin, China as the research subject, in light of the research outcomes regarding the damage mechanisms and potential damage factors of tight sandstone oil and gas reservoirs, a geological evaluation approach based on the well log response characteristics was constructed, clarifying the porosity and permeability features of the C 6 reservoir, establishing the numerical model of the oil reservoir, and further elaborating the methods for dividing the development layers, selecting the development well pattern, and determining the development well density. The design parameters of horizontal well-segmented hydraulic fracturing were meticulously optimized, resulting in a minimum cluster spacing of 7 m and a maximum cluster spacing of 20 m. Given the influence of horizontal stress differences, the optimum fracturing density was ascertained to be 16 perforations per meter, and the optimal fracturing fluid volume was identified through simulation to range from 12 to 25 m3/m. The crucial technologies for the development of tight sandstone oil and gas reservoirs in horizontal wells have been clearly identified, offering theoretical direction for the efficient exploitation of deep tight sandstone oil and gas reservoirs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信