基于支持向量机和小波变换的配电网高阻抗故障检测(以伊朗Markazi省为例)

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Mohammad Sadegh Attar, Mohammad Reza Miveh
{"title":"基于支持向量机和小波变换的配电网高阻抗故障检测(以伊朗Markazi省为例)","authors":"Mohammad Sadegh Attar,&nbsp;Mohammad Reza Miveh","doi":"10.1002/ese3.2056","DOIUrl":null,"url":null,"abstract":"<p>High impedance faults (HIFs) can lead to crucial damage to the utility grid, such as the risk of fire in material assets, electricity supply interruptions, and long service restoration times. Due to their low current magnitude, conventional protective equipment, such as overcurrent relays, cannot detect these faults. Alternatively, the waveform and variation range of current in HIFs are similar to other phenomena, such as linear and nonlinear load changes and capacitor banks. This paper employs a support vector machine (SVM) classification algorithm that demonstrates reliable accuracy and discrete wavelet transform (DWT) in HIF detection. First, the data set containing measured current signals of HIFs is collected to implement this approach. Then, DWT decomposes it to extract the features of each sample in the data set. The extracted features from this part are used as input to the SVM classification algorithm. The proposed idea is initially implemented on the IEEE 34-bus distribution test network. The proposed method achieves high capability and accuracy in detecting high-impedance faults. The proposed method is also applied to a real power distribution network in Markazi Province of Iran, yielding satisfactory results. EMTP-RV simulation software is used to simulate and evaluate the proposed method for power network modeling. Moreover, MATLAB software is used for feature extraction, and Python programming language in Google Colab and Spyder environment is applied to implement the SVM algorithm. The simulation results confirm the high accuracy of the suggested method. The main criteria obtained by the proposed method include accuracy, sensitivity, specificity, precision, F-score, and Dice, which are 99.581%, 98.684%, 100%, 100%, 99.338%, and 99.338%, respectively, for the test network, and 97.94%, 93.45%, 100%, 100%, 96.614%, and 96.618%, respectively, for the real power distribution network.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1171-1183"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2056","citationCount":"0","resultStr":"{\"title\":\"High-Impedance Fault Detection in Distribution Networks Based on Support Vector Machine and Wavelet Transform Approach (Case Study: Markazi Province of Iran)\",\"authors\":\"Mohammad Sadegh Attar,&nbsp;Mohammad Reza Miveh\",\"doi\":\"10.1002/ese3.2056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High impedance faults (HIFs) can lead to crucial damage to the utility grid, such as the risk of fire in material assets, electricity supply interruptions, and long service restoration times. Due to their low current magnitude, conventional protective equipment, such as overcurrent relays, cannot detect these faults. Alternatively, the waveform and variation range of current in HIFs are similar to other phenomena, such as linear and nonlinear load changes and capacitor banks. This paper employs a support vector machine (SVM) classification algorithm that demonstrates reliable accuracy and discrete wavelet transform (DWT) in HIF detection. First, the data set containing measured current signals of HIFs is collected to implement this approach. Then, DWT decomposes it to extract the features of each sample in the data set. The extracted features from this part are used as input to the SVM classification algorithm. The proposed idea is initially implemented on the IEEE 34-bus distribution test network. The proposed method achieves high capability and accuracy in detecting high-impedance faults. The proposed method is also applied to a real power distribution network in Markazi Province of Iran, yielding satisfactory results. EMTP-RV simulation software is used to simulate and evaluate the proposed method for power network modeling. Moreover, MATLAB software is used for feature extraction, and Python programming language in Google Colab and Spyder environment is applied to implement the SVM algorithm. The simulation results confirm the high accuracy of the suggested method. The main criteria obtained by the proposed method include accuracy, sensitivity, specificity, precision, F-score, and Dice, which are 99.581%, 98.684%, 100%, 100%, 99.338%, and 99.338%, respectively, for the test network, and 97.94%, 93.45%, 100%, 100%, 96.614%, and 96.618%, respectively, for the real power distribution network.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 3\",\"pages\":\"1171-1183\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2056\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2056","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高阻抗故障(hif)可能会对公用电网造成重大损害,例如物质资产着火的风险、电力供应中断和长时间的服务恢复时间。由于其电流大小小,传统的保护设备,如过流继电器,不能检测这些故障。或者,hif中电流的波形和变化范围与其他现象类似,例如线性和非线性负载变化以及电容器组。本文采用精度可靠的支持向量机(SVM)分类算法和离散小波变换(DWT)进行HIF检测。首先,收集包含hif测量电流信号的数据集来实现该方法。然后,对其进行DWT分解,提取数据集中每个样本的特征。从这部分提取的特征作为SVM分类算法的输入。所提出的思想在IEEE 34总线配线测试网络上初步实现。该方法在检测高阻抗故障方面具有较高的能力和精度。并将该方法应用于伊朗Markazi省的实际配电网,取得了满意的结果。利用EMTP-RV仿真软件对所提出的电网建模方法进行了仿真和评价。利用MATLAB软件进行特征提取,并在谷歌Colab和Spyder环境下使用Python编程语言实现SVM算法。仿真结果验证了该方法的精度。该方法得到的主要判别标准包括准确率、灵敏度、特异性、精密度、f值和Dice,测试网络的判别标准分别为99.581%、98.684%、100%、100%、99.338%和99.338%,实际配电网的判别标准分别为97.94%、93.45%、100%、100%、96.614%和96.618%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Impedance Fault Detection in Distribution Networks Based on Support Vector Machine and Wavelet Transform Approach (Case Study: Markazi Province of Iran)

High-Impedance Fault Detection in Distribution Networks Based on Support Vector Machine and Wavelet Transform Approach (Case Study: Markazi Province of Iran)

High impedance faults (HIFs) can lead to crucial damage to the utility grid, such as the risk of fire in material assets, electricity supply interruptions, and long service restoration times. Due to their low current magnitude, conventional protective equipment, such as overcurrent relays, cannot detect these faults. Alternatively, the waveform and variation range of current in HIFs are similar to other phenomena, such as linear and nonlinear load changes and capacitor banks. This paper employs a support vector machine (SVM) classification algorithm that demonstrates reliable accuracy and discrete wavelet transform (DWT) in HIF detection. First, the data set containing measured current signals of HIFs is collected to implement this approach. Then, DWT decomposes it to extract the features of each sample in the data set. The extracted features from this part are used as input to the SVM classification algorithm. The proposed idea is initially implemented on the IEEE 34-bus distribution test network. The proposed method achieves high capability and accuracy in detecting high-impedance faults. The proposed method is also applied to a real power distribution network in Markazi Province of Iran, yielding satisfactory results. EMTP-RV simulation software is used to simulate and evaluate the proposed method for power network modeling. Moreover, MATLAB software is used for feature extraction, and Python programming language in Google Colab and Spyder environment is applied to implement the SVM algorithm. The simulation results confirm the high accuracy of the suggested method. The main criteria obtained by the proposed method include accuracy, sensitivity, specificity, precision, F-score, and Dice, which are 99.581%, 98.684%, 100%, 100%, 99.338%, and 99.338%, respectively, for the test network, and 97.94%, 93.45%, 100%, 100%, 96.614%, and 96.618%, respectively, for the real power distribution network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信